共检索到 3

Overwintering frost damage is a major challenge for the wine grape industry in northern China. This study investigates overwintering treatments to improve survival rates and mitigate frost damage in the wine grape production area of the northern foothills of the Tianshan Mountains. Seven overwintering treatments were tested: soil-covered striped cloth, striped cloth, sandwiched striped cloth, thickened striped cloth, double-layered striped cloth, heat-insulating striped cloth, and heat-insulating sandwich striped cloth. Temperature and humidity were continuously monitored during the overwintering period, both aboveground and at depths of 20 and 40 cm underground. By analyzing temperature trends, the duration of low temperatures, and temperature fluctuations, comprehensive overwintering indices were derived through principal component analysis to assess heat retention, moisture preservation, and the impact on grapevine survival. The results showed that the sandwiched striped cloth treatment provided the best insulation, with a 4.4 degrees C higher minimum daily temperature and a 356% increase in overwintering indices compared to striped cloth alone. The double-layer striped cloth treatment also improved safety, with a 130% increase in overwintering indices. Other treatments, including the soil-covered and the heat-insulating striped cloth, showed reduced performance. The sandwiched striped cloth and double-layer striped cloth treatments are recommended for northern China's wine grape regions, with further research needed to evaluate their economic viability.

期刊论文 2025-03-01 DOI: 10.3390/app15052400

Rising soil salinity poses significant challenges to Mediterranean viticulture. While some rootstocks effectively reduce salt accumulation in grafted scions, the mechanisms and performance of novel rootstocks remain largely unexplored. This study compared two novel M-series rootstocks (M2, M4) with established commercial rootstocks (1103 Paulsen, R110) to evaluate their physiological responses and salt tolerance under irrigation with varying salinity levels (0, 25, 50, and 75 mM NaCl) over 5 months. Growth parameters, photosynthetic efficiency, chlorophyll content (SPAD), ion homeostasis, and visual symptoms were monitored. Results revealed genotype-specific strategies: 1103 Paulsen exhibited robust photosynthetic efficiency and ion exclusion, maintaining growth and chlorophyll stability; M2 demonstrated superior biomass retention and moderate ion compartmentalization but showed reduced photosynthetic performance at higher salinity levels; R110 displayed effective ion management at moderate salinity but experienced significant growth reduction under severe stress; and M4 was the most sensitive, with severe reductions in growth and ion homeostasis. Organ-specific responses highlighted roots acting as primary ion reservoirs, particularly for sodium and calcium; leaves exhibited high potassium and chloride concentrations, critical for photosynthesis but prone to ionic imbalance under stress; and stems and wood played a buffering role, compartmentalizing excess sodium and minimizing damage to photosynthetic tissues. The reported findings provide valuable insights for rootstock selection and breeding programs, particularly for regions facing increasing soil and water salinization challenges.

期刊论文 2025-02-01 DOI: 10.3390/agronomy15020473

The European Green Deal aims to reduce the pesticide use, notably by developing biocontrol products to protect crops from diseases. Indeed, the use of significant amounts of chemicals negatively impact the environment such as soil microbial biodiversity or groundwater quality, and human health. Grapevine (Vitis vinifera) was selected as one of the first targeted crop due to its economic importance and its dependence on fungicides to control the main damaging diseases worldwide: grey mold, downy and powdery mildews. Chitosan, a biopolymer extracted from crustacean exoskeletons, has been used as a biocontrol agent in many plant species, including grapevine, against a variety of cryptogamic diseases such as downy mildew (Plasmopara viticola), powdery mildew (Erysiphe necator) and grey mold (Botrytis cinerea). However, the precise molecular mechanisms underlying its mode of action remain unclear: is it a direct biopesticide effect or an indirect elicitation activity, or both? In this study, we investigated six chitosans with diverse degrees of polymerization (DP) ranging from low to high DP (12, 25, 33, 44, 100, and 470). We scrutinized their biological activities by evaluating both their antifungal properties and their abilities to induce grapevine immune responses. To investigate their elicitor activity, we analyzed their ability to induce MAPKs phosphorylation, the activation of defense genes and metabolite changes in grapevine. Our results indicate that the chitosans with a low DP are more effective in inducing grapevine defenses and possess the strongest biopesticide effect against B. cinerea and P. viticola. We identified chitosan with DP12 as the most efficient resistance inducer. Then, chitosan DP12 has been tested against downy and powdery mildews in the vineyard trials performed during the last three years. Results obtained indicated that a chitosan-based biocontrol product could be sufficiently efficient when the amount of pathogen inoculum is quite low and could be combined with only two fungicide treatments during whole season programs to obtain a good protection efficiency. On the whole, a chitosan-based biocontrol product could become an interesting alternative to meet the chemicals reduction targeted in sustainable viticulture.

期刊论文 2024-02-07 DOI: 10.3389/fpls.2024.1360254 ISSN: 1664-462X
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-3条  共3条,1页