共检索到 2

Background: Bacillus cereus is a widespread environmental Gram-positive bacterium which is especially common in soil and dust. It produces two types of toxins that cause vomiting and diarrhea. At present, foodborne outbreaks due to Bacillus cereus group bacteria (especially Bacillus cereus sensu stricto) are rising, representing a serious problem in the agri-food supply chain. Methods: In this work, we analyzed 118 strains belonging to the Bacillus cereus group, isolated from several food sources, for which in vitro and in silico antibiotic resistance assessments were performed. Results: Many strains showed intermediate susceptibility to clindamycin, erythromycin, and tetracycline, suggesting an evolving acquisition of resistance against these antibiotics. Moreover, one strain showed intermediate resistance to meropenem, an antibiotic currently used to treat infections caused by Bacillus cereus. In addition to the phenotypic antimicrobial resistance profile, all strains were screened for the presence/absence of antimicrobial genes via whole-genome sequencing. There was inconsistency between the in vitro and in silico analyses, such as in the case of vancomycin, for which different isolates harbored resistance genes but, phenotypically, the same strains were sensitive. Conclusions: This would suggest that antibiotic resistance is a complex phenomenon due to a variety of genetic, epigenetic, and biochemical mechanisms.

期刊论文 2024-09-01 DOI: 10.3390/antibiotics13090898 ISSN: 2079-6382

The micaceous weathered granitic soil (WGS) is frequently encountered in civil engineering worldwide, unfortunately little information is available regarding how mica affects the physico-mechanical behaviors of WGS. This study prepares reconstituted WGS with different mica contents by removing natural mica in the WGS, and then mixes it with commercial mica powders. The geotechnical behavior as well as the microstructures of the mixtures are characterized. The addition of mica enables the physical indices of WGS to be specific combinations of coarser gradation and high permeability but high Atterberg limits. However, high mica content in WGS was found to be associated with undesirable mechanical properties, including increased compressibility, disintegration, and swelling potential, as well as poor compactability and low effective frictional angle. Microstructural analysis indicates that the influence of mica on the responses of mixtures originates from the intrinsic nature of mica as well as the particle packing being formed within WGS. Mica exists in the mixture as stacks of plates that form a spongy structure with high compressibility and swelling potential. Pores among the plates give the soil high water retention and high Atterberg limits. Large pores are also generated by soil particles with bridging packing, which enhances the permeability and water-soil interactions upon immersion. This study provides a microlevel understanding of how mica dominates the behavior of WGS and provides new insights into the effective stabilization and improvement of micaceous soils. (c) 2024 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Production and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/ licenses/by-nc-nd/4.0/).

期刊论文 2024-06-01 DOI: 10.1016/j.jrmge.2023.03.011 ISSN: 1674-7755
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-2条  共2条,1页