Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) emerged in Wuhan city of China in late December 2019 and identified as a novel coronavirus. Due to its contagious nature, the virus spreads rapidly and causes coronavirus disease 2019 (COVID-19). The global tally of COVID-19 was 28 million in early September 2020. The fears and stress associated with SARS-CoV-2 has demolished the socio-economic status worldwide. Researchers are trying to identify treatments, especially antiviral drugs and/or vaccines, that could potentially control the viral spread and manage the ongoing unprecedented global crisis. To date, more than 300 clinical trials have been conducted on various antiviral drugs, and immunomodulators are being evaluated at various stages of COVID-19. This review aims to collect and summarize a list of drugs used to treat COVID-19, including dexamethasone, chloroquine, hydroxychloroquine, lopinavir/ritonavir, favipiravir, remdesivir, tociluzimab, nitazoxanide and ivermectin. However, some of these drugs are not effective and their use has been suspended by WHO. (C) 2020 The Authors. Published by Elsevier Ltd.
There is an increased awareness that the biogeochemical cycling at high latitudes will be affected by a changing climate. However, because biogeochemical studies most often focus on a limited number of elements (i.e., C, P and N) we lack baseline conditions for many elements. In this work, we present a 42-element mass-balance budget for lake dominated catchment in West Greenland. By combining site specific concentration data from various catchment compartments (precipitation, active layer soils, groundwater, permafrost, lake water, lake sediments and biota) with catchment geometries and hydrological fluxes from a distributed hydrological model we have assessed present-day mobilization, transport and accumulation of a whole suite of elements with different biogeochemical behavior. Our study shows that, under the cold and dry conditions that prevails close to the inland ice-sheet: i) eolian processes are important for the transport of elements associated with mineral particles (e.g., Al, Ti, Si), and that these elements tend to accumulate in the lake sediment, ii) that even if weathering rates are slowed down by the dry and cold climate, weathering in terrestrial soils is an important source for many elements (e.g., lanthanides), iii) that the cold and dry conditions results in an accumulation of elements supplied by wet deposition (e.g., halogens) in both terrestrial soils and the lake-water column, and iv) that lead and sulfur from legacy pollution are currently being released from the terrestrial system. All these processes are affected by the climate, and we can therefore expect that the cycling of the majority of the 42 studied elements will change in the future. However, it is not always possible to predict the direction of this change, which shows that more multi-element biogeochemical studies are needed to increase our understanding of the consequences of a changing climate for the Arctic environment.
1. Our knowledge on the responses of permafrost ecosystems to climate warming is critical for assessing the direction and magnitude of permafrost carbon-climate feedback. However, most of the previous experiments have only been able to warm the air and surface soil, with limited effects on the permafrost temperature. Consequently, it remains challenging to realistically simulate permafrost thawing in terms of increased active layer (a layer freezing and thawing seasonally above permafrost) thickness under climate warming scenarios. 2. Here, we presented the experimental design and warming performance of a novel experiment, Simulate Warming at Mountain Permafrost (SWAMP), the first one to successfully simulate permafrost warming and the subsequent active layer deepening in a swamp meadow situated on the Tibetan Plateau. Infrared heating was employed as above-ground warming to elevate the temperature of the air and surface soil, and heating rods were inserted vertically in the soil to provide below-ground warming for transmitting heat to the deep active layer and even to permafrost deposits. 3. In 3 m diameter warmed circular plots, the air and the entire soil profile (from surface soil to 120 cm) was effectively heated, with an increase of approximately 2 degrees C in the upper 60 cm, which progressively weakened with soil depth. Warming increased soil moisture across the growing season by inducing an earlier thawing of the soil. Values varied from 1.8 +/- 1.8 to 12.3 +/- 2.3% according to the soil depth. Moreover, during the growing season, the warmed plots had greater thaw depths and a deeper active layer thickness of 12.6 +/- 0.8 cm. In addition, soil thawing duration was prolonged by the warming, ranging from 22.8 +/- 3.3 to 49.3 +/- 4.5 days depending on the soil depth. 4. The establishment of SWAMP provides a more realistic simulation of warming-induced permafrost thaw, which can then be used to explore the effect of climate warming on permafrost ecosystems and the potential permafrost carbon-climate feedback. Notably, our experiment is more advantageous for investigating how deep soil processes respond to climate warming and active layer deepening, compare with experiments which use passive warming techniques such as open top chambers (OTCs).
Mount Everest provides natural advantages to finding radiation-resistant extremophiles that are functionally mechanistic and possess commercial significance. (1) Background: Two bacterial strains, designated S5-59T and S8-45T, were isolated from moraine samples collected from the north slope of Mount Everest at altitudes of 5700m and 5100m above sea level. (2) Methods: The present study investigated the polyphasic features and genomic characteristics of S5-59(T) and S8-45(T). (3) Results: The major fatty acids and the predominant respiratory menaquinone of S5-59(T) and S8-45(T) were summed as feature 3 (comprising C16:1 omega 6c and/or C16:1 omega 7c) and ubiquinone-10 (Q-10). Phylogenetic analyses based on 16S rRNA sequences and average nucleotide identity values among these two strains and their reference type strains were below the species demarcation thresholds of 98.65% and 95%. Strains S5-59(T) and S8-45(T) harbored great radiation resistance. The genomic analyses showed that DNA damage repair genes, such as mutL, mutS, radA, radC, recF, recN, etc., were present in the S5-59(T) and S8-45(T) strains. Additionally, strain S5-59(T) possessed more genes related to DNA protection proteins. The pan-genome analysis and horizontal gene transfers revealed that strains of Sphingomonas had a consistently homologous genetic evolutionary radiation resistance. Moreover, enzymatic antioxidative proteins also served critical roles in converting ROS into harmless molecules that resulted in resistance to radiation. Further, pigments and carotenoids such as zeaxanthin and alkylresorcinols of the non-enzymatic antioxidative system were also predicted to protect them from radiation. (4) Conclusions: Type strains S5-59(T) (=JCM 35564T =GDMCC 1.3193T) and S8-45(T) (=JCM 34749T =GDMCC 1.2715T) represent two novel species of the genus Sphingomonas with the proposed name Sphingomonas qomolangmaensis sp. nov. and Sphingomonas glaciei sp. nov. The type strains, S5-59(T) and S8-45(T), were assessed in a deeply genomic study of their radiation-resistant mechanisms and this thus resulted in a further understanding of their greater potential application for the development of anti-radiation protective drugs.
Climate change is predicted to have far reaching consequences for the mobility of carbon in arctic landscapes. On a regional scale, carbon cycling is highly dependent on interactions between terrestrial and aquatic parts of a catchment. Despite this, studies that integrate the terrestrial and aquatic systems and study entire catchments using site-specific data are rare. In this work, we use data partly published by Lindborg et al. (2016a) to calculate a whole-catchment carbon mass-balance budget for a periglacial catchment in West Greenland. Our budget shows that terrestrial net primary production is the main input of carbon (99% of input), and that most carbon leaves the system through soil respiration (90% of total export/storage). The largest carbon pools are active layer soils (53% of total carbon stock or 13 kg C m (2)), permafrost soils (30% of total carbon stock or 7.6 kg C m (2)) and lake sediments (13% of total carbon stock or 10 kg C m (2)). Hydrological transport of carbon from the terrestrial to aquatic system is lower than in wetter climates, but the annual input of 4100 kg C yr (1) (or 3.5 g C m (2) yr (1)) that enters the lake via runoff is still three times larger than the eolian input of terrestrial carbon. Due to the dry conditions, the hydrological export of carbon from the catchment is limited (5% of aquatic export/storage or 0.1% of total export/storage). Instead, CO2 evasion from the lake surface and sediment burial accounts for 57% and 38% of aquatic export/storage, respectively (or 0.8% and 0.5% of total export/storage), and Two-Boat Lake acts as a net source of carbon to the atmosphere. The limited export of carbon to downstream water bodies make our study system different from wetter arctic environments, where hydrological transport is an important export pathway for carbon. (C) 2019 The Author(s). Published by Elsevier B.V.