Ice records provide a qualitative rather than a quantitative indication of the trend of climate change. Using the bulk aerodynamic method and degree day model, this study quantified ice mass loss attributable to sublimation/evaporation (S/E) and meltwater on the basis of integrated observations (1960-2006) of glacier-related and atmospheric variables in the northeastern Tibetan Plateau. During 1961-2005, the average annual mass loss in the ice core was 95.33 +/- 20.56 mm w.e. (minimum: 78.97 mm w.e. in 1967, maximum: 146.67 mm w.e. in 2001), while the average ratio of the revised annual ice accumulation was 21.2 +/- 7.7% (minimum: 11.0% in 1992, maximum 44.8% in 2000). A quantitative formula expressing the relationship between S/E and air temperature at the monthly scale was established, which could be extended to estimation of S/E changes of other glaciers in other regions. The elevation effect on alpine precipitation determined using revised ice accumulation and instrumental data was found remarkable. This work established a method for quantitative assessment of the temporal variation in ice core mass loss, and advanced the reconstruction of long-term precipitation at high elevations. Importantly, the formula established for reconstruction of S/E from temperature time series data could be used in other regions.
Numerous endorheic lakes in the Qinghai-Tibet Plateau (QTP) have shown a dramatic increase in total area since 1996. These expanding lakes are mainly located in the interior regions of the QTP, where permafrost is widely distributed. Despite significant permafrost degradation due to global warming, the impact of permafrost thawing on lake evolution in QTP has been underexplored. This study investigated the permafrost degradation and its correlation with lake area increase by selecting four lake basins (Selin Co, Nam Co, Zhari Namco, and Dangqiong Co) in QTP for analysis. Fluid-heat-ice coupled numerical models were conducted on the aquifer cross-sections in these four lake basins, to simulate permafrost thawing driven by rising surface temperatures, and calculate the subsequent changes in groundwater discharge into the lakes. The contribution of these changes to lake storage, which is proportional to lake area, was investigated. Numerical simulation indicates that from 1982 to 2011, permafrost degradation remained consistent across the four basins. During this period, the active layer thickness first increased, then decreased, and partially transformed into talik, with depths reaching up to 25 m. By 2011, groundwater discharge had significantly risen, exceeding 2.9 times the initial discharge in 1988 across all basins. This increased discharge now constitutes up to 17.67 % of the total lake water inflow (Selin Co). The dynamic lake water budget further suggests that groundwater contributed significantly to lake area expansion, particularly since 2000. These findings highlight the importance of considering permafrost thawing as a crucial factor in understanding the dynamics of lake systems in the QTP in the context of climate change.
The global climate is becoming warmer and wetter, and the physical properties of saline soil are easily affected by the external climate changes, which can lead to complex water-heat-salt-mechanics (WHSM) coupling effect within the soil. However, in the context of climate change, the current research on the surface energy balance process and laws of water and salt migration in saline soil are not well understood. Moreover, testing systems for studying the impact of external meteorological factors on the properties of saline soil are lacking. Therefore, this study developed a testing system that can simulate the environmental coupling effect of the WHSM in saline soil against a background of climate change. Based on meteorological data from the Hexi District in the seasonal permafrost region of China, the testing system was used to clarify the characteristics of surface energy and WHSM coupling changes in sulfate saline soil in Hexi District during the transition of the four seasons throughout the year. In addition, the reliability of the testing system was also verified using testing data. The results showed that the surface albedo of sulfate saline soil in the Hexi region was the highest in winter, with the highest exceeding 0.4. Owing to changes in the external environment, the heat flux in the sulfate saline soil in spring, summer, and early autumn was positive, while the heat flux in late autumn and winter was mainly negative. During the transition of the four seasons throughout the year in the Hexi region, the trends of soil temperature, volumetric water content, and conductivity were similar, first increasing and then decreasing. As the soil depth increased, the influence of external environmental factors on soil temperature, volumetric water content, and conductivity gradually weakened, and the hysteresis effect became more pronounced. Moreover, owing to the influence of external environmental temperature, salt expansion in the positive temperature stage accounts for approximately five times the salt-frost heave deformation in the negative temperature stage, indicating that the deformation of sulfate saline soil in the Hexi region is mainly caused by salt expansion. Therefore, to reduce the impact of external climate change on engineering buildings and agriculture in salted seasonal permafrost regions, appropriate measures and management methods should be adopted to minimize salt expansion and soil salinization.
Study area: Urumqi Glacier No.1 Catchment in central Asia. Study focus: Chemical weathering at the basin scale is important process for understanding the feedback mechanism of the carbon cycle and climate change. This study mainly used the actual sampling data in 2013, 2014, and 2016, and the first collection from the literature in same catchment to analyze the seasonal and interannual characteristics of meltwater runoff, as well as cation denudation rate (CDR). New hydrological insights for the study region: The dominant ions of meltwater runoff are Ca2 +, HCO3- , and SO42-, which are mainly derived from calcite dissolution, feldspar weathering and sulfide oxidation. Meltwater runoff at Urumqi Glacier No.1 has higher concentrations of Ca2+ and lower concentrations of HCO3- than that from glaciers in Asia. Compared to 2006 and 2007, cation concentrations increased in 2013 and 2014, while SO42- concentration decreased. The daily ion concentration has seasonality and exhibits a negative relationship with discharge. Daily CDR is positively related to discharge and temperature. Annual CDR values range from 12.34 to 19.04 t/ km2/yr in 2013, 2014, and 2016, which are 1-1.7 times higher than those in 2006 and 2007 and higher than some glaciers in Asia. These results indicate that chemical weathering rate in the Urumqi Glacier No.1 catchment has increased with climate warming, and it is stronger than that of some glaciers in the Tibetan Plateau and surroundings.
Study area: Urumqi Glacier No.1 Catchment in central Asia. Study focus: Chemical weathering at the basin scale is important process for understanding the feedback mechanism of the carbon cycle and climate change. This study mainly used the actual sampling data in 2013, 2014, and 2016, and the first collection from the literature in same catchment to analyze the seasonal and interannual characteristics of meltwater runoff, as well as cation denudation rate (CDR). New hydrological insights for the study region: The dominant ions of meltwater runoff are Ca2 +, HCO3- , and SO42-, which are mainly derived from calcite dissolution, feldspar weathering and sulfide oxidation. Meltwater runoff at Urumqi Glacier No.1 has higher concentrations of Ca2+ and lower concentrations of HCO3- than that from glaciers in Asia. Compared to 2006 and 2007, cation concentrations increased in 2013 and 2014, while SO42- concentration decreased. The daily ion concentration has seasonality and exhibits a negative relationship with discharge. Daily CDR is positively related to discharge and temperature. Annual CDR values range from 12.34 to 19.04 t/ km2/yr in 2013, 2014, and 2016, which are 1-1.7 times higher than those in 2006 and 2007 and higher than some glaciers in Asia. These results indicate that chemical weathering rate in the Urumqi Glacier No.1 catchment has increased with climate warming, and it is stronger than that of some glaciers in the Tibetan Plateau and surroundings.
Precipitation comes in various phases, including rainfall, snowfall, sleet, and hail. Shifts of precipitation phases, as well as changes in precipitation amount, intensity, and frequency, have significant impacts on regional climate, hydrology, ecology, and the energy balance of the land-atmosphere system. Over the past century, certain progress has been achieved in aspects such as the observation, discrimination, transformation, and impact of precipitation phases. Mainly including: since the 1980s, studies on the observation, formation mechanism, and prediction of precipitation phases have gradually received greater attention and reached a certain scale. The estimation of different precipitation phases using new detection theories and methods has become a research focus. A variety of discrimination methods or schemes, such as the potential thickness threshold method of the air layer, the temperature threshold method of the characteristic layer, and the near-surface air temperature threshold method, have emerged one after another. Meanwhile, comparative studies on the discrimination accuracy and applicability assessment of multiple methods or schemes have also been carried out simultaneously. In recent years, the shift of precipitation from solid to liquid (SPSL) in the mid-to-high latitudes of the Northern Hemisphere has become more pronounced due to global warming and human activities. It leads to an increase in rain-on-snow (ROS) events and avalanche disasters, affecting the speed, intensity, and duration of spring snow-melting, accelerating sea ice and glacier melting, releasing carbon from permafrost, altering soil moisture, productivity, and phenological characteristics of ecosystems, and thereby affecting their structures, processes, qualities, and service functions. Although some progress has been made in the study of precipitation phases, there remains considerable research potential in terms of completeness of basic data, reliability of discrimination schemes, and the mechanistic understanding of the interaction between SPSL and other elements or systems. The study on shifts of precipitation phases and their impacts will play an increasingly important role in assessing the impacts of global climate change, water cycle processes, water resources management, snow and ice processes, snow and ice-related disasters, carbon emissions from permafrost, and ecosystem safety.
Ongoing and amplified climate change in the Arctic is leading to glacier retreat and to the exposure of an ever-larger portion of non-glaciated permafrost-dominated landscapes. Warming will also cause more precipitation to fall as rain, further enhancing the thaw of previously frozen ground. Yet, the impact of those perturbations on the geochemistry of Arctic rivers remains a subject of debate. Here, we determined the geochemical composition of waters from various contrasting non-glacial permafrost catchments and investigated their impact on a glacially dominated river, the Zackenberg River (Northeast Greenland), during late summer (August 2019). We also studied the effect of rainfall on the geochemistry of the Zackenberg River, its non-glacial tributaries, and a nearby independent non-glacial headwater stream Gr ae nse. We analyzed water properties, quantified and characterized dissolved organic matter (DOM) using absorbance and fluorescence spectroscopy and radiocarbon isotopes, and set this alongside analyses of the major cations (Ca, Mg, Na, and K), dissolved silicon (Si), and germanium/silicon ratios (Ge/Si). The glacier-fed Zackenberg River contained low concentrations of major cations, dissolved Si and dissolved organic carbon (DOC), and a Ge/Si ratio typical of bulk rock. Glacial DOM was enriched in protein-like fluorescent DOM and displayed relatively depleted radiocarbon values (i.e., old DOM). Non-glacial streams (i.e., tributaries and Gr ae nse) had higher concentrations of major cations and DOC and DOM enriched in aromatic compounds. They showed a wide range of values for radiocarbon, Si and Ge/Si ratios associated with variable contributions of surface runoff relative to deep active layer leaching. Before the rain event, Zackenberg tributaries did not contribute notably to the solute export of the Zackenberg River, and supra-permafrost ground waters governed the supply of solutes in Zackenberg tributaries and Gr ae nse stream. After the rain event, surface runoff modified the composition of Gr ae nse stream, and non-glacial tributaries strongly increased their contribution to the Zackenberg River solute export. Our results show that summer rainfall events provide an additional source of DOM and Si-rich waters from permafrost-underlain catchments to the discharge of glacially dominated rivers. This suggests that the magnitude and composition of solute exports from Arctic rivers are modulated by permafrost thaw and summer rain events. This event-driven solute supply will likely impact the carbon cycle in rivers, estuaries, and oceans and should be included into future predictions of carbon balance in these vulnerable Arctic systems.
The freeze-thaw cycle of near-surface soils significantly affects energy and water exchanges between the atmosphere and land surface. Passive microwave remote sensing is commonly used to observe the freeze-thaw state. However, existing algorithms face challenges in accurately monitoring near-surface soil freeze/thaw in alpine zones. This article proposes a framework for enhancing freeze/thaw detection capability in alpine zones, focusing on band combination selection and parameterization. The proposed framework was tested in the three river source region (TRSR) of the Qinghai-Tibetan Plateau. Results indicate that the framework effectively monitors the freeze/thaw state, identifying horizontal polarization brightness temperature at 18.7 GHz (TB18.7H) and 23.8 GHz (TB23.8H) as the optimal band combinations for freeze/thaw discrimination in the TRSR. The framework enhances the accuracy of the freeze/thaw discrimination for both 0 and 5-cm soil depths. In particular, the monitoring accuracy for 0-cm soil shows a more significant improvement, with an overall discrimination accuracy of 90.02%, and discrimination accuracies of 93.52% for frozen soil and 84.68% for thawed soil, respectively. Furthermore, the framework outperformed traditional methods in monitoring the freeze-thaw cycle, reducing root mean square errors for the number of freezing days, initial freezing date, and thawing date by 16.75, 6.35, and 12.56 days, respectively. The estimated frozen days correlate well with both the permafrost distribution map and the annual mean ground temperature distribution map. This study offers a practical solution for monitoring the freeze/thaw cycle in alpine zones, providing crucial technical support for studies on regional climate change and land surface processes.
Increasing greenhouse gas levels drive extensive changes in Arctic and cold-dominated environments, leading to a warmer, more humid, and variable climate. Associated permafrost thaw creates new groundwater flow paths in cold regions that are causing unprecedented environmental changes. This review of recent advances in groundwater research in cold environments has revealed that a new paradigm is emerging where groundwater is at the center of these changes. Groundwater flow and associated heat and solute transport are now used as a basis to understand hydrological changes, permafrost dynamics, water quality, integrity of infrastructure along with ecological impacts. Although major advances have been achieved in cold regions' cryohydrogeological research, the remaining knowledge gaps are numerous. For example, groundwater as a drinking water source is poorly documented despite its social importance. Lateral transport processes for carbon and contaminants are still inadequately understood. Numerical models are improving, but the highly complex physical-ecological changes occurring in the arctic involve coupled thermal, hydrological, hydrogeological, mechanical, and geochemical processes that are difficult to represent and hamper quantitative analysis and limit predictive capacity. Systematic long-term observatories where measurements involving groundwater are considered central are needed to help resolve these research gaps. Innovative transdisciplinary research will be critical to comprehend and predict these complex transformations.
Study region: Urumqi River headwater region in eastern Tianshan, central Asia. Study focus: Climate change is anticipated to accelerate glacier shrinkage and alter hydrological conditions, causing variations in the runoff patterns in the catchment and significantly threatening the regional water resources. However, few models exhibit adequate performance to simulate both surface alterations and glacier/snow runoff. Therefore, this study combined the glacier module with the Soil and Water Assessment Tool (SWAT) model to estimate the effect of climate change on the streamflow in the Urumqi River headwater region. The Urumqi River Headwater region is representative because of its long data series, viatal location, and local water availability, and it contains the longest-observed reference glacier (Urumqi Glacier No.1) in China, which spans the period from 1958 to the present. New hydrological insights for the region: The SWAT model performed satisfactorily for both calibration (1983-2005) and validation (2006-2016) periods with a Nash-Sutcliffe efficiency (NSE) greater than 0.80. The water balance analysis suggested that the snow/glacier melt contributed approximately 25% to the water yield. At the end of the 21st century, the temperature would increase by 2.4-3.8 degrees C while the precipitation would decrease by 1-2% under two future scenarios (ssp245 and ssp585). Thus, a 34-36% reduction in streamflow was projected due to above climate change impacts. This information would contribute to the development of adaptation strategies for sustainable water resource management.