共检索到 2

Tibetan Plateau (TP) lakes are important water resources, which are experiencing quick expansion in recent decades. Previous researches mainly focus on analyzing the relationship between terrestrial water storage (TWS) change and lake water storage (LWS) change in the total inner TP, it is still lack of researches about the spatial difference and the characteristic of sub-region in the inner TP. In this study, we estimated the area change of 34 lakes by using Landsat images in the northeastern TP during 1976-2013, and LWS change by using the Shuttle Radar Topography Mission (SRTM). The results suggested that LWS had shrunk from 1976 to 1994, and then expanded quickly until 2013. LWS had a serious decrease by 13.6 Gt during 1976-1994, and then it increased quickly by 35.4 Gt during 1994-2013. We estimated TWS change, soil moisture change, and permafrost degradation based on the satellite data and related models during 2003-2013. The results indicated that their changing rates were 1.86 Gt/y, 0.22 Gt/y, and -0.19 Gt/y, respectively. We also calculated the change of groundwater based on the mass balance with a decreasing trend of -0.054 Gt/y. The results suggested that the cause of TWS change was the increase of LWS. We analyzed the cause of lake change according to water balance, and found that the primary cause of lake expansion was the increasing precipitation (80.7%), followed by glacier meltwater (10.3%) and permafrost degradation (9%). The spatial difference between LWS change and TWS change should be studied further, which is important to understand the driving mechanism of water resources change.

期刊论文 2021-07-01 DOI: http://dx.doi.org/10.1007/s11629-020-6474-8 ISSN: 1672-6316

Terrestrial water storage (TWS) is a key variable in global and regional hydrological cycles. In this study, the TWS changes in the Yangtze River Basin (YRB) were derived using the Lagrange multiplier method (LMM) from Gravity Recovery and Climate Experiment (GRACE) data. To assess TWS changes from LMM, different GRACE solutions, different hydrological models, and in situ data were used for validation. Results show that TWS changes from LMM in YRB has the best performance with the correlation coefficients of 0.80 and root mean square error of 1.48 cm in comparison with in situ data. The trend of TWS changes over the YRB increased by 10.39 +/- 1.27 Gt yr(-1) during the 2003-2015 period. Moreover, TWS change is disintegrated into the individual contributions of hydrological components (i.e., glaciers, surface water, soil moisture, and groundwater) from satellite data, hydrologic models, and in situ data. The estimated changes in individual TWS components in the YRB show that (1) the contribution of glaciers, surface water, soil moisture, and groundwater to total TWS changes is 15%, 12%, 25% and 48%, respectively; (2) Geladandong glacier melt from CryoSat-2/ICESat data has a critical effect on TWS changes with a correlation coefficients of -0.51; (3) the Three Gorges Reservoir Impoundment has a minimal effect on surface water changes (mainly lake water storage), but it has a substantial effect on groundwater storage (GWS), (4) the Poyang and Doting Lake water storage changes are mainly caused by climate change, (5) soil moisture storage change is mainly influenced by surface water, (6) human-induced GWS changes accounted for approximately half of the total GWS. The results of this study can provide valuable information for decision-making in water resources management.

期刊论文 2021-04-01 DOI: 10.1016/j.jhydrol.2020.125661 ISSN: 0022-1694
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-2条  共2条,1页