Moderate-size earthquakes, and the presence of water saturated soil in the near surface can trigger the liquefaction geohazard causing buildings to settle / tilt or collapse, damaging bridges, dams, and roads. A number of paleo-seismic research have focused on the Himalayan area as a potential site for liquefaction. The present study site is in the south of the tectonically active Himalayan foothills and lies in earthquake Seismic Zone III. Therefore, the region can experience earthquakes from nearby regions and can potentially damage civil infrastructures due to liquefaction. The objective of this paper is to determine the susceptibility of alluvial soil deposits to liquefaction for seismic hazard and risk mitigation. Liquefaction geohazard study of alluvial deposits was carried out using shear wave velocity (Vs) profiling. Preliminary assessment of the soil is made by building the average shear wave velocity map up to 30 m depth (Vs30) and by constructing the corrected shear wave velocity (V-s1) maps. It was observed from the Vs30 map that a major portion of the studied area lies in Site Class CD and only a small portion lies in Site Class D. Moreover, it is also noticed from the V(s1 )map that a smaller of the area has V(s1 )lower than the upper limit of V-s1(& lowast; )(215 m/s) below which liquefaction may occur. The region showing lower values of V(s1 )is further examined for liquefaction hazard as per the guidelines given by Andrus et al. (2004). Resistance of the soil to liquefaction, stated as cyclic resistance ratio (CRR), and the magnitude of cyclic loading on the soil induced by the earthquake shaking, stated as cyclic stress ratio (CSR) are computed for the area. Several maps of factor of safety (FS) for different depths are prepared by taking the ratio of CSR and CRR. When FS < 1, the soil is considered prone to liquefaction. Furthermore, susceptibility of soil to liquefaction against different peak horizontal ground surface acceleration (PHGSA) and varying depth of water table is also evaluated in terms of factor of safety. It is observed from this study that for lower levels of PHGSA (up to 0.175 g) the soil can be considered safe. However, the soil becomes more vulnerable to liquefaction when PHGSA is above 0.175 g and with rising water table. The comparison of the factor of safety (FS) obtained using the SPT-N method and the Vs-derived approach shows consistent results, with both methods confirming the absence of liquefaction in the studied soil layers.
This study aims to assess the effectiveness of inter-storey isolation structures in reducing seismic responses in super high-rise buildings, with a focus on analyzing the impact of soil-structure interaction (SSI) on the dynamic performance of the buildings. Utilizing the lumped parameter SR (Sway-Rocking) model, which separately simulates the overall displacement of the super high-rise structure and the rotational motion of the foundation, the dynamic characteristic parameters of the simplified model are derived. The natural frequencies of the system are calculated by solving the equations of motion. The study examines the influence of parameters such as soil shear wave velocity and structural damping ratio on the dynamic response of the structure, with particular emphasis on displacement transfer rates. The findings indicate that inter-storey isolation structures are highly effective in reducing displacement responses in super high-rise buildings, especially when considering SSI effects. Specifically, for high-damping inter-storey isolation structures, modal frequencies decrease as soil shear wave velocity decreases. In non-isolated structures, the damping ratio increases with decreasing soil shear wave velocity, whereas for isolated structures, the damping ratio decreases, with a more pronounced reduction at higher damping ratios. Increasing damping significantly reduces inter-storey displacement and damage indices. However, under low shear wave velocity conditions, inter-storey isolation structures may experience increased displacement and damage.
This paper proposes a performance-based damage assessment procedure for reinforced concrete (RC) box tunnels subjected to earthquakes, employing a pseudostatic approach and a ductility-based damage index that incorporates the relative stiffness between the structure and surround soil, widely denoted as flexibility ratio (F). Distributed plasticity frame elements and discretized spring elements were used to model tunnel structures (slabs, walls, and columns) and the reactions of surrounding soil, respectively. Two damage-state descriptors were investigated: one based on the number of yielding in the tunnel members and another on the material state. Results show that the number-of-yielding based descriptor captures global structural capacity only for specific F ranges, while drift ratio lacks consistency as a damage index across all F ranges. In contrast, the material-state descriptor and damage indexes based on curvature ductility provide effective capacity estimation and are independent of F. Therefore, combining both descriptors is recommended for seismic performance evaluation of RC box tunnels. Additionally, higher F leads to brittle failure due to better load distribution and increased yielding before the strength degradation, while lower F results in concentrated damage with less yielding. These findings highlight the necessity of seismic design considering flexibility ratio for earthquake-resistant tunnels.
Geohazards such as slope failures and retaining wall collapses have been observed during thawing season, typically in early spring. These geohazards are often attributed to changes in the engineering properties of soil through changes in soil phase with moisture condition. This study investigates the impact of freezing and thawing on soil stiffness by addressing shear wave velocity (Vs) and compressional wave velocity (Vp). An experimental testing program with a temperature control system for freezing and thawing was prepared, and a series of bender and piezo disk element tests were conducted. The changes in Vs and Vp were evaluated across different phases: unfrozen to frozen; frozen to thawed; and unfrozen to thawed. Results indicated different patterns of changes in Vs and Vp during these transitions. Vs showed an 8% to 19% decrease for fully saturated soil after thawing, suggesting higher vulnerability to shear failure-related geohazards in thawing condition. Vp showed no notable change after thawing compared to initial unfrozen condition. Based on the test results in this study, correlation models for Vs and Vp with changes in soil phase of unfrozen, frozen, and thawed conditions were established. From computed tomography (CT) image analysis, it was shown that the decrease in Vs was attributed to changes in bulk volume and microscopic soil structure.
Conventional triaxial apparatus has limited capabilities for advanced testing of frozen soils, such as loading under controlled temperature and volume change measurements. To bridge this gap, in this paper, we presented a novel ultrasound-integrated double-wall triaxial cell designed specifically for stress and strain-controlled, as well as temperature-controlled testing of frozen soils. Monitoring pore ice content during triaxial tests in frozen soils poses a significant challenge. To overcome this hurdle, we developed an in-cell ultrasonic P wave measurement setup, which was integrated into the triaxial device to monitor freeze advancement at any stage of the test. We proposed a three-phase poromechanics-based approach to estimate the pore ice content of frozen soil samples based on the P-wave velocity. A series of creep tests under different freezing temperatures have been undertaken for frozen soil samples to investigate the effect of ice content and temperature on the volumetric deformations of frozen soils during creep tests. Our study demonstrates the potential of the proposed ultrasound-integrated double-wall triaxial apparatus for creep tests of frozen soils.
Prediction of the intensity of earthquake-induced motions at the ground surface attracts extensive attention from the geoscience community due to the significant threat it poses to humans and the built environment. Several factors are involved, including earthquake magnitude, epicentral distance, and local soil conditions. The local site effects, such as resonance amplification, topographic focusing, and basin-edge interactions, can significantly influence the amplitude-frequency content and duration of the incoming seismic waves. They are commonly predicted using site effect proxies or applying more sophisticated analytical and numerical models with advanced constitutive stress-strain relationships. The seismic excitation in numerical simulations consists of a set of input ground motions compatible with the seismo-tectonic settings at the studied location and the probability of exceedance of a specific level of ground shaking over a given period. These motions are applied at the base of the considered soil profiles, and their vertical propagation is simulated using linear and nonlinear approaches in time or frequency domains. This paper provides a comprehensive literature review of the major input parameters for site response analyses, evaluates the efficiency of site response proxies, and discusses the significance of accurate modeling approaches for predicting bedrock motion amplification. The important dynamic soil parameters include shear-wave velocity, shear modulus reduction, and damping ratio curves, along with the selection and scaling of earthquake ground motions, the evaluation of site effects through site response proxies, and experimental and numerical analysis, all of which are described in this article.
Moisture intrusion into the subgrade can significantly increase its moisture content, leading to a decrease in stiffness and strength, thereby compromising the serviceability performance of the pavement. Electro-osmosis has been used as an effective method for reducing moisture content and improving subgrade mechanical properties. However, its impact on mechanical properties has not been well understood. This study evaluated the mechanical behavior of electro-osmosis-treated subgrade soil through laboratory experiments that included bender element and cyclic triaxial tests. The study analyzed the effects of supply voltage and soil compaction degree on electro-osmosis treatment. The results showed that after treatment, the shear wave velocity increased by 26.0 to 59.2%, and the dynamic resilient modulus improved by a factor of three. Increasing the supply voltage and degree of compaction was found to lead to more significant improvements. Further analysis revealed that the reduction in moisture content alone was insufficient to contribute to the improvement. Cementation of colloids generated by the electrochemical reaction between soil particles also contributed to the improvement. It is worth noting that the nonuniform distribution of moisture and colloid in electro-osmosis-treated soils resulted in heterogeneity, with soil close to the anode being the weakest in terms of mechanical strength. Chemical injection or polarity reversal was suggested to enhance the uniformity of distribution and improve the overall treatment effectiveness. Overall, the study highlights the potential of electro-osmosis as a viable method for improving the mechanical properties of subgrade soil, but further research is required to investigate the heterogeneity of the distribution of moisture and colloid.
Loess in Northwest China is widely deposited atop the Hipparion Red Clay. Unlike red clay stratigraphy, loess is mostly seasonally frozen, with physical properties that change easily at low temperatures, increasing the risk of natural disasters like slope instability and landslides. To study the low-temperature properties of loess and red clay strata, loess-red clay composite samples with varying water contents were subjected to freezing at different low temperatures. Their resistivity and P-wave velocity were measured postfreezing. The results indicate that as water content increases, soil resistivity decreases due to enhanced electrical conduction, with a slower rate of decline. When the temperature decreases, resistivity rises gradually in the unfrozen stage (25 degrees C to - 5 degrees C) and increases rapidly in the frozen stage (-10 degrees C to - 20 degrees C) as water transitions to solid ice. At low water contents, soil resistivity is more sensitive to temperature changes due to reduced liquid conductive pathways. P-wave velocity decreases almost linearly with increasing water content in unfrozen soils, but this trend reverses in frozen soils. With decreasing temperature, P-wave velocity shows minimal change in unfrozen soils but increases significantly after freezing, with greater sensitivity to temperature changes at higher water contents. This experiment provides valuable data support for engineering construction, soil frost heave risk assessment, and geophysical investigations in permafrost regions.
The inclusion of calcite precipitates (CaCO3) in soft soil can improve the mechanical properties. Understanding the variability in sand stiffness due to heterogeneous precipitates is crucial for stiffness evaluation and prediction. A novel discrete element-Monte Carlo (DE-MC) method was proposed to quantify the sand stiffness variability induced by stochastic distributions of calcite precipitates, specifically focusing on shear wave velocity (Vs) as an indicator of soil stiffness. A total of 1972 samples were constructed to simulate stochastic spatial distributions of calcite precipitates. Through joint stochastic analysis, the preferential paths formed by calcite clusters were identified as significant contributors to Vs variability. The normalized connectivity per unity distance contact weight (Cd,n) exhibited the most correlated relation with Vs. Two weight selection methods were applicable for using Cd,n to characterize and predict Vs. The results suggest that the DE-MC method has the potential to assess the variability in sand stiffness quantitatively.
Preexisting cracks inside tight sandstones are one of the most important properties for controlling the mechanical and seepage behaviors. During the cyclic loading process, the rock generally exhibits obvious memorability and irreversible plastic deformation, even in the linear elastic stage. The assessment of the evolution of preexisting cracks under hydrostatic pressure loading and unloading processes is helpful in understanding the mechanism of plastic deformation. In this study, ultrasonic measurements were conducted on two tight sandstone specimens with different bedding orientations subjected to hydrostatic loading and unloading processes. The P-wave velocity was characterized by a similar response with the volumetric strain to the hydrostatic pressure and showed different strain sensitivities at different loading and unloading stages. A numerical model based on the discrete element method (DEM) was proposed to quantitatively clarify the evolution of the crack distribution under different hydrostatic pressures. The numerical model was verified by comparing the evolution of the measured P-wave velocities on two anisotropic specimens. The irreversible plastic deformation that occurred during the hydrostatic unloading stage was mainly due to the permanent closure of plastic-controlled cracks. The closure and reopening of cracks with a small aspect ratio account for the major microstructure evolution during the hydrostatic loading and unloading processes. Such evolution of microcracks is highly dependent on the stress path. The anisotropy of the crack distribution plays an important role in the magnitude and strain sensitivity of the P-wave velocity under stress conditions. The study can provide insight into the microstructure evolution during cyclic loading and unloading processes. (c) 2025 Institute of Rock and Soil Mechanics, Chinese Academy of Sciences. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/ 4.0/).