Changes are projected for the boreal biome with complex and variable effects on forest vegetation including drought-induced tree mortality and forest loss. With soil and atmospheric conditions governing drought intensity, specific drivers of trees water stress can be difficult to disentangle across temporal scales. We used wavelet analysis and causality detection to identify potential environmental controls (evapotranspiration, soil moisture, rainfall, vapor pressure deficit, air temperature and photosynthetically active radiation) on daily tree water deficit and on longer periods of tree dehydration in black spruce and tamarack. Daily tree water deficit was controlled by photosynthetically active radiation, vapor pressure deficit, and air temperature, causing greater stand evapotranspiration. Prolonged periods of tree water deficit (multi-day) were regulated by photosynthetically active radiation and soil moisture. We provide empirical evidence that continued warming and drying will cause short-term increases in black spruce and tamarack transpiration, but greater drought stress with reduced soil water availability. This research explores how climate change could impact the water stress experienced by black spruce and tamarack trees in the western boreal forest of Canada. We focused on a key measure called tree water deficit to understand if the trees were under stress due to insufficient water. We examined how tree water deficit relates to environmental factors such as temperature, sunlight, and soil moisture. The findings revealed that, on a daily basis, factors like sunlight and temperature cause trees to release more water into the air. However, over longer periods (days to weeks), the amount of water in the soil becomes crucial, suggesting that trees might face water stress during dry spells. So, while trees could grow more on hotter, sunnier days, they could also experience water stress and reduced growth if the soil becomes too dry for an extended period. This study helps us grasp how various factors interact to influence tree water stress in the boreal forest, providing insights important for managing these ecosystems in a changing climate. A novel approach to determine environmental controls of tree water deficit across time scales with wavelet analysis and Granger causality Soil moisture emerges as a significant control of tree water deficit in boreal trees at longer scales (multi-days) Daily productivity gains with warming will be mitigated by decreased soil water availability in longer periods of tree water deficit
Effective utilization of reservoirs facilitates the distribution of water resources in both time and space, providing strong support for the sustainable growth of the economy and society. However, the periodic water level fluctuations of a reservoir during its operation may lead to geological hazards such as landslides. Here, we conducted a comparative analysis of the deformation processes of reservoir and non-reservoir landslides in the Jilintai area between 2017 and 2022 using Interferometric Synthetic Aperture Radar (InSAR) technology and wavelet analysis. Results show that more unstable locations were found on shaded slopes with a soil moisture of 6-10% than on sunny ones with a soil moisture of 15-19%. Both reservoir and non-reservoir landslides showed continuous and prolonged creep displacement over time. The deformation curve of the reservoir landslides displayed a steplike trend, whereas it was a linear trend without the discernible acceleration period for the non-reservoir landslides. Furthermore, the wavelet analysis revealed that the deformation of reservoir landslides follows a one-year period, almost synchrony with reservoir level changes. The results from this work deepen our understanding of kinematic processes of reservoir and non-reservoir landslides, which is crucial for reasonable and effective landslide monitoring and prevention.