共检索到 7

Investigation of mercury (Hg) from atmospheric precipitation is important for evaluating its ecological impacts and developing mitigation strategies. Western China, which includes the Tibetan Plateau and the Xinjiang Uyghur Autonomous Region, is one of the most remote region in the world and is understudied in regards to Hg precipitation. Here we report seesaw-like patterns in spatial variations of precipitation Hg in Western China, based on Hg speciation measurements at nine stations over this remote region. The Hg fraction analyzed included total Hg (HgT), particulate-bound Hg (HgP) and methylmercury (MeHg). Spatially, HgT concentrations and percentage of HgP in precipitation were markedly greater in the westerlies domain than those in the monsoon domain, but the higher wet HgT flux, MeHg concentration and percentage of MeHg in precipitation mainly occurred in the monsoon domain. Similar spatial patterns of wet Hg deposition were also obtained from GEOSChem modeling. We show that the disparity of anthropogenic and natural drivers between the two domains are mainly responsible for this seesaw-like spatial patterns of precipitation Hg in Western China. Our study may provide a baseline for assessment of environmental Hg pollution in Western China, and subsequently assist in protecting this remote alpine ecosystem.

2024-08

In this study, in situ observations were conducted for six criteria air pollutants (PM2.5, PM10, SO2, NO2, CO, and O-3) at 23 sites in western China for 1 year. Subsequently, the detailed Weather Research and Forecasting model coupled with Chemistry (WRF-Chem) results for the pollutants were determined. The WRF-Chem model provided a clear perspective on the spatiotemporal distribution of air pollutants. High pollutant concentrations were mainly observed over highly populated mega-city regions, such as Sichuan and Guanzhong basins, whereas low concentration levels were observed over the Tibetan Plateau (TP). The TP also showed an increased concentration of O-3. Seasonally, all six pollutants except O-3 exhibited high concentration values during winter and low values during summer. O-3 concentrations exhibited an opposite seasonal variation in low-altitude regions. Unlike other pollutants that exhibited gradually decreasing concentrations with an increase in altitude, O-3 concentrations revealed an increasing trend. Furthermore, NO2 concentrations gradually increased in the upper atmosphere possibly due to lighting and stratospheric transmission. Atmospheric pollution is closely related to emissions and meteorological variations in western China. Meteorological conditions in the summer are conducive to pollutant dispersion and wet scavenging; however, unfavourable weather conditions (high pressure as well as a low planetary boundary layer height and precipitation level) in the winter can further worsen air pollution. Atmospheric pollutants from various emission sectors generally exhibited varying monthly profiles. In six typical cities, pollutants were positively correlated with multiple emission sources except for industrial emissions. Further sensitivity simulations indicated that eliminating residential emissions resulted in the largest decrease (up to 70%) in PM2.5 and PM10 concentrations. The most significant reductions in the concentrations of SO2 and NO2 were achieved by eliminating industrial and transportation emissions, respectively. The outcomes of this study could be helpful for future studies on pollution formation mechanisms as well as environmental and health risk assessments in western China. (C) 2019 Elsevier Ltd. All rights reserved.

2024-03

To understand the characteristics of particulate matter (PM) and other air pollutants in Xinjiang, a region with one of the largest sand-shifting deserts in the world and significant natural dust emissions, the concentrations of six air pollutants monitored in 16 cities were analyzed for the period January 2013-June 2019. The annual mean PM2.5, PM10, SO2, NO2, CO, and O-3 concentrations ranged from 51.44 to 59.54 mu g m(-3), 128.43-155.28 mu g m(-3), 10.99-17.99 mu g m(-3), 26.27-31.71 mu g m(-3), 1.04-1.32 mg m(-3), and 55.27-65.26 mu g m(-3), respectively. The highest PM concentrations were recorded in cities surrounding the Taklimakan Desert during the spring season and caused by higher amounts of wind-blown dust from the desert. Coarse PM (PM10-2.5) was predominant, particularly during the spring and summer seasons. The highest PM2.5/PM10 ratio was recorded in most cities during the winter months, indicating the influence of anthropogenic emissions in winters. The annual mean PM2.5 (PM10) concentrations in the study area exceeded the annual mean guidelines recommended by the World Health Organization (WHO) by a factor of ca. similar to 5-6 (similar to 7-8). Very high ambient PM concentrations were recorded during March 19-22, 2019, that gradually influenced the air quality across four different cities, with daily mean PM2.5 (PM10) concentrations similar to 8-54 (similar to 26-115) times higher than the WHO guidelines for daily mean concentrations, and the daily mean coarse PM concentration reaching 4.4 mg m(-3). Such high PM2.5 and concentrations pose a significant risk to public health. These findings call for the formulation of various policies and action plans, including controlling the land degradation and desertification and reducing the concentrations of PM and other air pollutants in the region. (C) 2020 Elsevier Ltd. All rights reserved.

2023-08-01

To alleviate air pollution in western China, experiencing rapid economic growth following national western development strategies, an accurate and compressive assessment of PM2.5 sources is critical. Here, we firstly investigated the spatiotemporal variation in PM2.5 and analyzed its association with weather conditions and emission changes. Then, WRF-Chem simulations were conducted for an entire year to obtain various emission sectors' contributions to the PM2.5 mass by a hybrid method, which considers both the proportions of various components as well as each sector contributing to these components. The results showed that residential emissions had the largest contribution to PM2.5 because of its dominating contribution for primary components of PM2.5 (BC and POA), which can explain > 70% of PM2.5. Seasonally, the residential contributions to PM2.5 were higher in the non-monsoon period than in the monsoon period because of the higher contribution ratios to primary components. Regionally, as an essential source of the gaseous precursors, the industrial and transportation sectors were the second-largest contributors to PM2.5 in the highly populated urban (HP) and remote background (RM) regions, respectively. Further assessment of emission reduction measures indicated that eliminating 50% of residential emissions induced a 29.4% and 33.1% decrease in the annual PM2.5 mass of the HP and RM regions, respectively, with higher decrease proportions in non-monsoon. By comparison, eliminating 50% of industrial emissions caused a significantly lower decrease in PM2.5 for both HP (10%) and RM (4.6%). Eliminating 50% of transportation emissions led to PM2.5 concentrations to decline by 9.3% in RM, which was greater than the 4.6% reduction caused by eliminating 50% of industrial emissions. Therefore, in addition to focusing on the residential sector, especially in non-monsoon in western China, the transportation sector should be a focus to alleviate PM2.5 pollution on the Tibetan Plateau. The outcome of this study provides valuable information for policy-makers to make strategies to mitigate air pollution in western China.

2022-03

Atmospheric nitrogen deposition is an important contributor to global and regional nitrogen cycles, and atmospheric nitrogen could be a critical limit nutrient for remote areas. In this study, nitrogen species compositions, deposition fluxes, and historical records in the mountains of Western China, including the Tibetan Plateau, were determined from snowpit and ice core samples collected from mountain glaciers. The mean concentration of total dissolved nitrogen (TDN) in the snowpit samples was 12.6 mu mol L-1 (8.0-17.8 mu mol L-1) and comprised 59% ammonium nitrogen, 35% nitrate nitrogen, and similar to 6% dissolved organic nitrogen. The deposition of nitrogen species, except organic nitrogen (likely due to its low concentrations and/or different origination), varied seasonally in a similar way based on the records of the snowpit profile. Based on monthly surface sample collection in one of the glaciers, the mass concentration and composition of nitrogen species varied monthly, mainly because of melting processes. During melting, the inorganic nitrogen content could be lost significantly, whereas the dissolved organic nitrogen concentration could be enriched because of microbial activity. For the historical records, the nitrogen deposition in mountain areas of Western China after 1960s was increased by about one time of that during 1900-1950 and was dominated by ammonium-N. From the snowpit data, we estimated the total dissolved nitrogen deposition flux at 0.56-1.3 (mean 0.88) kg ha(-1) a(-1) in the mountain area of Western China. These results could improve our understanding of nitrogen deposition and cycle in the mountain areas of Western China.

2022-02-03

The atmospheric circulation plays a critical role in the global transport and deposition of atmospheric pollutants such as mercury (Hg). Desert dust emissions contribute to nearly 60-95% of the global dust budget and thus, desert dust may facilitate atmospheric Hg transport and deposition to the downwind regions worldwide. The role of desert dust in biogeochemical cycling of Hg, however, has not been well recognized by the Hg research community. In this study, we measured the concentration of particulate bound Hg (HgP) in total suspended particulate (TSP) collected from China's largest desert, Taklimakan Desert, between 2013 and 2017. The results show that HgP concentrations over the Taklimakan Desert atmosphere are remarkably higher than those observed from background sites in China and are even comparable to those measured in most of the Chinese metropolitan cities. Moreover, HgP concentrations in the Taklimakan Desert exhibit a distinct seasonal pattern peaking during dust storm outbreak periods in spring and summer (March to August). A preliminary estimation demonstrates that export of total Hg associated with atmospheric dust from the Taklimakan Desert could be 59.7 +/- 60.3 (1SD) Mg yr(-1). The unexpectedly high HgP concentrations during duststorms, together with consistent seasonal pattern of Hg revealed from the snow/ice, clearly demonstrate that Asian desert dust could act as a significant carrier of atmospheric Hg to the cryosphere of Western China and even can have further global reach. (C) 2020 Elsevier Ltd. All rights reserved.

2022-01-15

Air pollution is a grand challenge of our time due to its multitude of adverse impacts on environment and society, with the scale of impacts more severe in developing countries, including China. Thus, China has initiated and implemented strict air pollution control measures over last several years to reduce impacts of air pollution. Monitoring data from Jan 2015 to Dec 2019 on six criteria air pollutants (SO2, NO2, CO, O-3, PM2.5, and PM10) at eight sites in southwestern China were investigated to understand the situation and analyze the impacts of transboundary air pollutants in this region. In terms of seasonal variation, the maximum concentrations of air pollutants at these sites were observed in winter or spring season depending on individual site. For diurnal variation, surface ozone peaked in the afternoon while the other pollutants had a bimodal pattern with peaks in the morning and late afternoon. There was limited transport of domestic emissions of air pollutants in China to these sites. Local emissions enhanced the concentrations of air pollutants during some pollution events. Mostly, the transboundary transport of air pollution from South Asia and Southeast Asia was associated with high concentrations of most air pollutants observed in southwestern China. Since air pollutants can be transported to southwestern China over long distances from the source regions, it is necessary to conduct more research to properly attribute and quantify transboundary transport of air pollutants, which will provide more solid scientific guidance for air pollution management in southwestern China. (C) 2021 China University of Geosciences (Beijing) and Peking University. Production and hosting by Elsevier B.V.

2021-10-01
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-7条  共7条,1页