Low-saturation liquid-containing granular materials are commonly encountered in both natural and industrial settings, where interstitial liquids significantly affect the motion of particles, while particle size polydispersity plays a crucial role in determining the level of system cohesion. In this study, the collapse of wet polydisperse granular columns is numerically investigated based on the developed discrete element model, with corresponding dam-break experiments performed to validate our numerical model and methodology. The dependence of the dynamics and flow mobility on particle size distribution is primarily examined, and the underlying mechanisms are also explored by analyzing particle path lengths and average fidelity. Building upon the effective Bond number proposed using the mixing theory, a macroscopic cohesion parameter at the material scale is defined by considering the dependence of the collapse on the system size effect. The relevance of this cohesion parameter in describing different wet polydisperse granular collapses is further validated based on our designed experimental tests and DEM simulations. The approach of constructing the cohesion parameters at different scales can be extended to characterize cohesion effects in more complex wet polydisperse granular flows and describe their associated rheological behaviors.
The current study adopts a micromechanical approach to explore the nature of stress transmission in wet granular materials. First, we derive the discrete form of the capillary stress tensor obtained from homogenization to show the virial nature of capillarity through the application of point -wise capillary forces in Discrete Element Modeling (DEM). Furthermore, the non -spherical character of the capillary stress tensor is highlighted through a series of DEM triaxial simulations. Contrary to common thinking, the capillary stress tensor has indeed both mean and deviatoric components due to the underlying micromechanical aspects. Relevant key dimensionless parameters are identified to evaluate the relative magnitude of the capillary stress to the externally applied and contact (intergranular) stresses, thus determining the specific conditions under which the contribution of the deviatoric part becomes considerable. In addition, a DEM simulation of a simple shear test is performed to confirm the anisotropy (non -sphericity) of capillary stress tensor. Finally, the effective nature of the contact stress in the sense of Terzaghi for the constitutive behavior of wet granular materials is investigated via a DEM stress probing analysis. Results suggest that a single contact stress variable - germane to an effective stress - cannot relate to strain for the constitutive law in triphasic condition.