Freezing and thawing profoundly affect soil carbon cycling. Under the influence of climate change, rising temperatures and glacier shrinkage in arid regions have increased the spring river supply to lakes. However, intense evaporation in summer and seasonal fluctuations in lake water levels alter the magnitude and direction of carbon emissions. Yet, the mechanisms of temperature and groundwater level factors on arid zone lake wetlands remain unclear. This study, through field monitoring, found that during soil freezing periods, Phragmites reduced emissions by 95.21% and increased emissions by 3.91% during thawing periods. Tamarix Chinensis and bare land exhibited a decrease in carbon uptake of 42.77% and 85.25% during soil freezing periods, and a decrease in carbon uptake of 41.98% and 2.17% during thawing periods. By constructing a freeze-thaw simulation device, we simulated CO2 emissions characteristics under different water level conditions during freeze-thaw processes, including water injection at 10 cm, 20 cm, 30 cm, 40 cm (corresponding to water levels 40 cm, 30 cm, 20 cm, 10 cm below the soil surface), as well as scenarios of anhydrous and flooding periods. The results showed that under freeze-thaw conditions, Phragmites exhibited the strongest carbon uptake when water was injected at 20 cm, transitioning from emissions during the anhydrous period to carbon uptake. Tamarix Chinensis exhibited the strongest carbon uptake during freeze-thaw cycles when water was injected at 10 cm, showing a 93.69% increase compared to the anhydrous period. Meanwhile, the bare land exhibited the strongest carbon uptake during freeze-thaw cycles in the no water period. Lower temperatures and higher water levels favor increased carbon uptake in lake wetlands. This study identifies optimal water levels for carbon uptake in lake wetlands during freeze-thaw, and the important role of water level and temperature conditions on carbon emissions, providing valuable insights for assessing the carbon feedback mechanisms in lake wetlands under future climate change.
2023-10-01 Web of ScienceTropical high-Andean wetlands, locally known as 'bofedales', are key ecosystems sustaining biodiversity, carbon sequestration, water provision and livestock farming. Bofedales' contribution to dry season baseflows and sustaining water quality is crucial for downstream water security. The sensitivity of bofedales to climatic and anthropogenic disturbances is therefore of growing concern for watershed management. This study aims to understand seasonal water storage and release characteristics of bofedales by combining remote sensing analysis and ground-based monitoring for the wet and dry seasons of late 2019 to early 2021, using the glacierised Vilcanota-Urubamba basin (Southern Peru) as a case study. A network of five ultrasound loggers was installed to obtain discharge and water table data from bofedal sites across two headwater catchments. The seasonal extent of bofedales was mapped by applying a supervised machine learning model using Random Forest on imagery from Sentinel-2 and NASADEM. We identified high seasonal variability in bofedal area with a total of 3.5% and 10.6% of each catchment area, respectively, at the end of the dry season (2020), which increased to 15.1% and 16.9%, respectively, at the end of the following wet season (2021). The hydrological observations and bofedal maps were combined into a hydrological conceptual model to estimate the storage and release characteristics of the bofedales, and their contribution to runoff at the catchment scale. Estimated lag times between 1 and 32 days indicate a prolonged bofedal flow contribution throughout the dry season (about 74% of total flow). Thus, our results suggest that bofedales provide substantial contribution to dry season baseflow, water flow regulation and storage. These findings highlight the importance of including bofedales in local water management strategies and adaptation interventions including nature-based solutions that seek to support long-term water security in seasonally dry and rapidly changing Andean catchments.
2023-08-01 Web of SciencePurpose Warming-induced permafrost degradation is anticipated to change the global carbon cycle. We attempted to determine the effect of permafrost degradation on carbon emissions and carbon sequestration of seven wetlands in three zones of Northeast China, aiming to investigate the responses of carbon sources/sinks to permafrost degradation. Methods Three zones (permafrost zone, PZ; discontinuous permafrost zone, DPZ; and permafrost degradation zone, PDZ) were selected to represent permafrost degradation stages. In each zone, we selected seven wetlands along the moisture gradient, namely, marsh (M), thicket swamp (TS), forested swamps (alder swamp, FAS; birch swamp, FBS; and larch swamp, FLS), forested fen (larch fen, FLF), and forested bog (larch bog, FLB). We determined the annual carbon emissions of soil heterotrophic respiration from seven wetlands and the annual net carbon sequestration of vegetation, evaluated the net carbon balance by calculating the difference between annual net carbon sequestration and annual carbon emissions, and then determined the magnitude and direction of carbon-climate feedback. Results and discussion With permafrost degradation, most forested wetlands (excluding FAS in PDZ) still acted as carbon sinks in DPZ (0.30 - 1.88 t ha(-1) year(-1)) and PDZ (0.31 - 1.76 t ha(-1) year(-1)) in comparison to PZ (0.46 - 2.43 t ha(-1) year(-1)). In contrast, M and TS acted as carbon sources in DPZ (-1.72 and -0.82 t ha(-1) year(-1)) and PDZ (-2.66 and -0.98 t ha(-1) year(-1)) in comparison to PZ (-0.86 and 0.03 t ha(-1) year(-1)), this result could be attributed to the increased CO2 emissions (promoted by warmer soil temperatures) and CH4 emissions (promoted by warmer soil temperatures, higher water tables and greater thaw depths), the two significantly increased the annual carbon emissions (increased by 8.8 - 14.4% in DPZ and by 35.0 - 46.0% in PDZ), and the annual carbon emissions > the annual net carbon sequestration. Furthermore, in terms of net radiative forcing, five forested wetlands still showed negative net radiative forcing in DPZ (-6.90 to -1.10 t CO2-eq ha(-1) year(-1)) in comparison to PZ (-8.91 to -1.62 t CO2-eq ha(-1) year(-1)). In contrast, in PDZ, only FLB showed negative net radiative forcing (-6.29 t CO2-eq ha(-1) year(-1)) and significantly increased by 288.3% compared to PZ (P < 0.05), indicating an ever-increasing net cooling impact, while the other four forested wetlands all turned into positive net radiative forcing (0.84 - 53.56 t CO2-eq ha(-1) year(-1)) because of higher CH4 (CO2-eq) emissions, indicating net warming impacts. Conclusions Our results indicated that permafrost degradation affected the carbon sources/sinks of seven wetlands via different mechanisms. M and TS acted as carbon sources in both DPZ and PDZ, while permafrost degradation did not change the overall direction of the net carbon balance of five forested wetlands. Most forested wetlands (excluding FAS in PDZ) still acted as carbon sinks in both DPZ and PDZ, although there were fluctuations in carbon sink values. Moreover, despite being carbon sinks, most forested wetlands (excluding FLB) in PDZ showed positive net radiative forcing compared to DPZ and PZ (negative net radiative forcing) when using the methodology of CO2 equivalent, indicating climatic warming impacts, while FLB showed negative net radiative forcing, indicating a climatic cooling impact. Therefore, FLB should be protected as a priority in the subsequent carbon sink management practices in permafrost zones.
2023-01-01 Web of ScienceHow methane (CH4) fluxes from alpine peatlands, especially during freeze-thaw cycles, affect the global CH4 budget is poorly understood. The present research combined the eddy covariance method, incubation experiments and high-throughput sequencing to observe CH4 flux from an alpine fen during thawing-freezing periods over a period of four years. The response of CH4 production potential and methanogenic archaea to climate change was analyzed. We found a relatively high mean annual cumulative CH4 emission of 37.7 g CH4-C m(-2). The dominant contributor to CH4 emission was the thawing period: warmer, longer thawing periods contributed 69.1-88.6% to the annual CH4 budget. Non-thawing periods also contributed, with shorter frozen-thawing periods accounting for up to 18.5% and shorter thawing-freezing periods accounting for up to 8.8%. Over the course of a year, emission peaked in the peak growing season and at onset of thawing and freezing. In contrast, emission did not vary substantially during the frozen period. Daily mean emission was highest during the thawing period and lowest during the frozen period. Diurnal patterns of CH4 emission were similar among the four periods, with peaks ranging from 12:00 to 18:00 and the lowest emission around 00:00. Water table and temperature were the dominant factors controlling CH4 emissions during different thawing-freezing periods. Our results suggest that CH4 emission from peatland will change substantially as CH4 production, microbial composition, and patterns of thawing-freezing cycles change with global warming. Therefore, frequent monitoring of CH4 fluxes in more peatlands and in situ monitoring of methanogenesis and related microbes are needed to provide a clear picture of CH4 fluxes and the thawing-freezing processes that affect them.
2021-02-15 Web of ScienceThe atmospheric methane (CH4) concentration, a potent greenhouse gas, is on the rise once again, making it critical to understand the controls on CH4 emissions. In Arctic tundra ecosystems, a substantial part of the CH4 budget originates from the cold season, particularly during the zero curtain (ZC), when soil remains unfrozen around 0 degrees C. Due to the sparse data available at this time, the controls on cold season CH4 emissions are poorly understood. This study investigates the relationship between the fall ZC and CH4 emissions using long-term soil temperature measurements and CH4 fluxes from four eddy covariance (EC) towers in northern Alaska. To identify the large-scale implication of the EC results, we investigated the temporal change of terrestrial CH4 enhancements from the National Oceanic and Atmospheric Administration monitoring station in Utqiagvik, AK, from 2001 to 2017 and their association with the ZC. We found that the ZC is extending later into winter (2.6 0.5 days/year from 2001 to 2017) and that terrestrial fall CH4 enhancements are correlated with later soil freezing (0.79 0.18-ppb CH4 day(-1) unfrozen soil). ZC conditions were associated with consistently higher CH4 fluxes than after soil freezing across all EC towers during the measuring period (2013-2017). Unfrozen soil persisted after air temperature was well below 0 degrees C suggesting that air temperature has poor predictive power on CH4 fluxes relative to soil temperature. These results imply that later soil freezing can increase CH4 loss and that soil temperature should be used to model CH4 emissions during the fall. Plain Language Summary Methane (CH4) is a powerful greenhouse gas, capturing more heat per molecule than carbon dioxide (CO2). Although CH4 is less concentrated in the atmosphere, it is the second most important greenhouse gas with respect to climate change after CO2. Arctic tundra ecosystems are potentially major sources of CH4, given large soil carbon storage and generally wet conditions, favorable to CH4 production. This study investigates if the persistence of unfrozen soils is associated with higher CH4 emissions from the Arctic. We combined long-term soil temperature measurements, terrestrial CH4 enhancements from the National Oceanic and Atmospheric Administration monitoring station in Utqiagvik, AK, and CH4 emissions from Arctic tundra ecosystems across four stations in the North Slope of Alaska. Our results show that from 2001 to 2017 the soil is freezing later and that later soil freezing is associated with higher fall CH4 enhancements. Given that unfrozen soils are related to higher CH4 emissions, a later soil freezing could contribute to the observed increase in the regional atmospheric CH4 enhancement. Unfrozen soil layers persisted after the air temperature was well below 0 degrees C, suggesting that air temperature does not properly predict the sensitivity of CH4 emissions to climate warming.
2019-08-01 Web of SciencePurposeWetlands have a critical impact on the global carbon cycle. This study aims to investigate the spatial and vertical distribution of the soil organic carbon concentration (SOCc), to identify the differences of SOCc among swamps, marshes, bogs, and fens at a regional scale, and finally to examine the main environmental factors impacting SOCc at different depth intervals within different wetland types located in the Greater Khingan Mountains (GKM).Materials and methodsA total of 218 soil samples were collected. SOCc was determined by the combustion-oxidation method. To analyze the impacts of wetland type, soil type, mean annual precipitation (MAP), mean annual temperature (MAT), evapotranspiration (ET), elevation (EL), and slope (SL) on SOCc, statistical analysis methods were executed, including ANOVA with the Duncan test, Pearson correlations analysis, and the stepwise multiple regressions analysis.Results and discussionThe mean values of SOCc in the 0-30, 30-60, and 60-100-cm intervals were 130.4, 64.2, and 32.6gkg(-1), respectively. The wetland type played an important role in the pattern of SOCc in terms of significant differences (p<0.05) among the different wetland types in the 0-60-cm depth. However, significant differences were not found among different soil types. In terms of the wetland type, the highest SOCc was found in bogs (p<0.05), probably due to the higher MAP and lower MAT. The increased MAP (R-2=0.1369, p<0.01) and decreased MAT (R-2=0.1225, p<0.01) had positive associations on the wetland SOCc. ET (R-2=0.2809, p<0.01), MAP (R-2=0.2025, p<0.01), and EL (R-2=0.0484, p<0.05) were positively correlated with marsh SOCc. Moreover, MAP was positively correlated with the bog SOCc (R-2=0.1296, p<0.01). For vertical patterns, SOCc was higher in the 0-30-cm interval and decreased with depth. The impacts of environmental factors on SOCc decreased with depth for each wetland type. Models were developed to document the relations between the SOCc of marshes and fens and corresponding environmental factors.ConclusionsWetland types largely differed in the soil carbon pools in the GKM of China. The relative importance of environmental factors was different for the SOCc values of various wetland types. To minimize carbon loss into the atmosphere, more protections are required for wetlands, especially in the 0-30-cm depth interval because it contains higher SOCc values and is more vulnerable and less stable than those in the deeper layers.
2019-03-01 Web of ScienceThe study was conducted during the growing seasons of 2013, 2014, and 2015 in the wet meadows on the eastern Qinghai-Tibet plateau (QTP) in the Gansu Gahai Wetland Nature Reserve to determine the dynamics of soil organic carbon (SOC) as affected by vegetation degradation along a moisture gradient and to assess its relationship with other soil properties and biomass yield. Hence, we measured SOC at depths of 0-10, 10-20, and 20-40 cm under the influence of four categories of vegetation degradation (healthy vegetation [HV], slightly degraded [SD], moderately degraded [MD], and heavily degraded [HD]). Our results showed that SOC decreased with increased degree of vegetation degradation. Average SOC content ranged between 36.18 +/- 4.06 g/kg in HD and 69.86 +/- 21.78 g/kg in HV. Compared with HV, SOC content reduced by 30.49%, 42.22%, and 48.22% in SD, MD, and HD, respectively. SOC significantly correlated positively with soil water content, aboveground biomass, and belowground biomass, but significantly correlated negatively with soil temperature and bulk density (p < 0.05). Highly Significant positive correlations were also found between SOC and total nitrogen (p = 0.0036), total phosphorus (p = 0.0006) and total potassium (p < 0.0001). Our study suggests that severe vegetation and moisture loss led to approximately 50% loss in SOC content in the wet meadows, implying that under climate warming, vegetation and soil moisture loss will dramatically destabilize carbon sink capacities of wetlands. We therefore suggest wetland hydrological management, restoration of vegetation, plant species protection, regulation of grazing activities, and other anthropogenic activities to stabilize carbon sink capacities of wetlands.
2018-12-01 Web of SciencePart 1 of this review synthesizes recent research on status and climate vulnerability of freshwater and saltwater wetlands, and their contribution to addressing climate change (carbon cycle, adaptation, resilience). Peatlands and vegetated coastal wetlands are among the most carbon rich sinks on the planet sequestering approximately as much carbon as do global forest ecosystems. Estimates of the consequences of rising temperature on current wetland carbon storage and future carbon sequestration potential are summarized. We also demonstrate the need to prevent drying of wetlands and thawing of permafrost by disturbances and rising temperatures to protect wetland carbon stores and climate adaptation/resiliency ecosystem services. Preventing further wetland loss is found to be important in limiting future emissions to meet climate goals, but is seldom considered. In Part 2, the paper explores the policy and management realm from international to national, subnational and local levels to identify strategies and policies reflecting an integrated understanding of both wetland and climate change science. Specific recommendations are made to capture synergies between wetlands and carbon cycle management, adaptation and resiliency to further enable researchers, policy makers and practitioners to protect wetland carbon and climate adaptation/resiliency ecosystem services.
2018-04-01 Web of ScienceMethane (CH4) is produced in many natural systems that are vulnerable to change under a warming climate, yet current CH4 budgets, as well as future shifts in CH4 emissions, have high uncertainties. Climate change has the potential to increase CH4 emissions from critical systems such as wetlands, marine and freshwater systems, permafrost, and methane hydrates, through shifts in temperature, hydrology, vegetation, landscape disturbance, and sea level rise. Increased CH4 emissions from these systems would in turn induce further climate change, resulting in a positive climate feedback. Here we synthesize biological, geochemical, and physically focused CH4 climate feedback literature, bringing together the key findings of these disciplines. We discuss environment-specific feedback processes, including the microbial, physical, and geochemical interlinkages and the timescales on which they operate, and present the current state of knowledge of CH4 climate feedbacks in the immediate and distant future. The important linkages between microbial activity and climate warming are discussed with the aim to better constrain the sensitivity of the CH4 cycle to future climate predictions. We determine that wetlands will form the majority of the CH4 climate feedback up to 2100. Beyond this timescale, CH4 emissions from marine and freshwater systems and permafrost environments could become more important. Significant CH4 emissions to the atmosphere from the dissociation of methane hydrates are not expected in the near future. Our key findings highlight the importance of quantifying whether CH4 consumption can counterbalance CH4 production under future climate scenarios. Plain Language Summary Methane is a powerful greenhouse gas, second only to carbon dioxide in its importance to climate change. Methane production in natural environments is controlled by factors that are themselves influenced by climate. Increased methane production can warm the Earth, which can in turn cause methane to be produced at a faster rate - this is called a positive climate feedback. Here we describe the most important natural environments for methane production that have the potential to produce a positive climate feedback. We discuss how these feedbacks may develop in the coming centuries under predicted climate warming using a cross-disciplinary approach. We emphasize the importance of considering methane dynamics at all scales, especially its production and consumption and the role microorganisms play in both these processes, to our understanding of current and future global methane emissions. Marrying large-scale geophysical studies with site-scale biogeochemical and microbial studies will be key to this.
2018-03-01 Web of ScienceClimate change is modifying global biogeochemical cycles. Microbial communities play an integral role in soil biogeochemical cycles; knowledge about microbial composition helps provide a mechanistic understanding of these ecosystem-level phenomena. Next generation sequencing approaches were used to investigate changes in microbial functional groups during ecosystem development, in response to climate change, in northern boreal wetlands. A gradient of wetlands that developed following permafrost degradation was used to characterize changes in the soil microbial communities that mediate C cycling: a bog representing an undisturbed system with intact permafrost, and a younger bog and an older bog that formed following the disturbance of permafrost thaw. Reference 16S rRNA databases and several diversity indices were used to assess structural differences among these communities, to assess relationships between soil microbial community composition and various environmental variables including redox potential and pH. Rates of potential CO2 and CH4 gas production were quantified to correlate sequence data with gas flux. The abundance of organic C degraders was highest in the youngest bog, suggesting higher rates of microbial processes, including potential CH4 production. In addition, alpha diversity was also highest in the youngest bog, which seemed to be related to a more neutral pH and a lower redox potential. These results could potentially be driven by increased niche differentiation in anaerobic soils. These results suggest that ecosystem structure, which was largely driven by changes in edaphic and plant community characteristics between the undisturbed permafrost bog and the two bogs formed following permafrost thaw, strongly influenced microbial function. (C) 2017 Elsevier Masson SAS. All rights reserved.
2017-09-01 Web of Science