共检索到 7

Biomass burning (BB) greatly impacts the Maritime Continent through various mechanisms including agricultural burning, land clearing and natural response to drought. The dynamic characteristics of BB in terms of its spatiotemporal distribution, seasonality, transport mechanism, and aerosol properties have prompted numerous research efforts including field campaigns, in -situ measurements, remote sensing, and modelling. Although the differing perspectives of these studies have offered insights on understanding the regional BB issues, it is challenging to compare and resolve the wider picture because of the diversity of approaches. Human -induced global warming has certainly caused multiple observed changes in the regional meteorological characteristics. In this study, we review BB events in the Maritime Continent from 2012 to 2021, focusing on the meteorological influence and knowledge evolution in cloud -aerosol -radiation (CAR). Unlike other reviews, our review examines the occurrence of BB events using synergistic application of ground -based measurement, global reanalysis model and satellite product, which allows us to examine the anomalies for comparison with other studies and identify the unique features of the event. We identified four dominant modes of variability responsible for the occurrence of large-scale BB in the Maritime Continent: (1) El Nin similar to o Southern Oscillations (ENSO), (2) extreme positiveIndian Ocean Dipole (pIOD), (3) tropical cyclone (TC) activity, and (4) Madden -Julian Oscillations (MJO). We reconcile the past CAR studies and summarize their findings based on the four key CAR mechanisms: (1) instantanous radiative forcing from aerosol -radiation interactions, IRFari (2) and its subsequent adjustments, SAari, (3) instantanous radiative forcing from aerosol -cloud interactions, IRFaci, and (4) and its subsequent adjustments, SAaci. We urge future CAR studies in the Maritime Continent should focus on accurate characterization of the composition of biomass burning plume which is a mixture of peatland, agricultural burning and anthropogenic sources.

期刊论文 2024-03-01 DOI: 10.1016/j.atmosenv.2023.120324 ISSN: 1352-2310

Northern high-latitude permafrost holds the largest soil carbon pool in the world. Understanding the responses of permafrost to wildfire is crucial for improving our ability to predict permafrost degradation and further carbon emissions. Recently, studies have demonstrated that wildfires in the pan-Arctic region induced the thickening of the active layer based on site or fire event observations. However, how this induced thickening is influenced by vegetation and permafrost types remains not fully understood due to the lack of wall-to-wall analysis. Therefore, this study employed remotely sensed fire data and modelled active layer thickness (ALT) to identify the fireinduced ALT change (& UDelta;ALT) for the pan-Arctic region, and the contributions of vegetation and permafrost were quantified using the random forest (RF) model. Our results showed that the average & UDelta;ALT and the sensitivity of & UDelta;ALT to burn severity both increased with decreasing ground ice content in permafrost. The largest values were detected in thick permafrost with low ground ice content. Regarding vegetation, the average and sensitivity of & UDelta;ALT in tundra were highest, followed by those in forest and shrub. When the individual environmental factors were all taken into account, the results showed that the contribution of vegetation types was much higher than that of permafrost types (20.2 % vs. 3.5 %). Our findings highlighted the importance of environmental factors in regulating the responses of permafrost to fire.

期刊论文 2023-12-01 DOI: 10.1016/j.scitotenv.2023.166132 ISSN: 0048-9697

Throughout the larch range, warming leads to frequent fires and an increase in burned areas. We test the hypothesis that fires are an essential natural factor that reset larch regeneration and support the existence of larch forests. The study area included Larix sibirica and L. gmelinii ranges within the permafrost zone. We used satellite-derived and field data, dendrochronology, and climate variables analysis. We found that warming led to an increase in fire frequency and intensity, mean, and extreme (>10,000 ha) burned areas. The burned area is increasing in the northward direction, while fire frequency is decreasing. The fire rate exponentially increases with decreasing soil moisture and increasing air temperature and air drought. We found a contrasting effect of wildfire on regeneration within continuous permafrost and within the southern lowland boundary of the larch range. In the first case, burnt areas regenerated via abounded larch seedlings (up to 500,000+ per ha), whereas the south burns regenerated mostly via broadleaf species or turned into grass communities. After the fire, vegetation GPP was restored to pre-fire levels within 3-15 years, which may indicate that larch forests continue to serve as carbon stock. At the southern edge of the larch range, an amplified fire rate led to the transformation of larch forests into grass and shrub communities. We suggested that the thawing of continuous permafrost would lead to shrinking larch-dominance in the south. Data obtained indicated that recurrent fires are a prerequisite for larch forests' successful regeneration and resilience within continuous permafrost. It is therefore not necessary to suppress all fires within the zone of larch dominance. Instead, we must focus fire suppression on areas of high natural, social, and economic importance, permitting fires to burn in vast, larch-dominant permafrost landscapes.

期刊论文 2023-08-01 DOI: 10.3390/fire6080301 ISSN: 2571-6255

The emission of black carbon (BC) particles, which cause atmospheric warming by affecting radiation budget in the atmosphere, is the result of an incomplete combustion process of organic materials. The recent wildfire event during the summer 2019-2020 in south-eastern Australia was unprecedented in scale. The wildfires lasted for nearly 3 months over large areas of the two most populated states of New South Wales and Victoria. This study on the emission and dispersion of BC emitted from the biomass burnings of the wildfires using the Weather Research Forecast-Chemistry (WRF-Chem) model aims to determine the extent of BC spatial dispersion and ground concentration distribution and the effect of BC on air quality and radiative transfer at the top of the atmosphere, the atmosphere and on the ground. The predicted aerosol concentration and AOD are compared with the observed data using the New South Wales Department of Planning and Environment (DPE) aethalometer and air quality network and remote sensing data. The BC concentration as predicted from the WRF-Chem model, is in general, less than the observed data as measured using the aethalometer monitoring network, but the spatial pattern corresponds well, and the correlation is relatively high. The total BC emission into the atmosphere during the event and the effect on radiation budget were also estimated. This study shows that the summer 2019-2020 wildfires affect not only the air quality and health impact on the east coast of Australia but also short-term weather in the region via aerosol interactions with radiation and clouds.

期刊论文 2023-04-01 DOI: 10.3390/atmos14040699

This paper conducts an extensive review of existing research to present a comprehensive analysis of the global problems caused by climate change, with a particular focus on the events that occurred during the record-breaking hottest year, 2023. Climate change is widely recognized as the defining issue of our time, and we find ourselves at a critical juncture in addressing its repercussions. The effects of climatic changes permeate various aspects of life on Earth, including increasing occurrences of floods, landslides, droughts, storms, sea-level rise, and other natural disasters. With the notion of global boiling, we aim to intensify awareness and prompt more radical actions to mitigate the worst consequences of climate change. It is designed to sound the alarm and trigger more radical action to stave off the worst of climate change. The escalating global warming, driven by human emissions of heat-trapping greenhouse gases, is already significantly altering the Earth's climate and leaving a profound impact on the environment. The melting of glaciers and ice sheets, earlier breakup of lake and river ice, shifts in plant and animal ranges, and earlier blooming of plants and trees are some of the observable manifestations. Furthermore, climate change has emerged as a critical factor in exacerbating the risk and severity of wildfires worldwide, with key influences stemming from temperature variations, soil moisture, and the presence of potential fuel sources such as trees and shrubs. These interconnected factors underscore the direct and indirect ties between climate variability, climate change, and the extent of wildfire risks.

期刊论文 2023-01-01 ISSN: 1687-5052

Wildfire is a major source of biomass burning aerosols, which greatly impact Earth climate. Tree species in North America (NA) boreal forests can support high-intensity crown fires, resulting in elevated injection height and longer lifetime (on the order of months) of the wildfire aerosols. Given the long lifetime, the properties of aged NA wildfire aerosols are required to understand and quantify their effects on radiation and climate. Here we present comprehensive characterization of climatically relevant properties, including optical properties and cloud condensation nuclei (CCN) activities of aged NA wildfire aerosols, emitted from the record-breaking Canadian wildfires in August 2017. Despite the extreme injection height of similar to 12 km, some of the wildfire plumes descended into the marine boundary layer in the eastern North Atlantic over a period of similar to 2 weeks, owing to the dry intrusions behind mid-latitude cyclones. The aged wildfire aerosols have high single scattering albedos at 529 nm (omega(529); 0.92-0.95) while low absorption Angstrom exponents (angstrom(abs)) at 464 nm/648 nm (0.7-0.9). In comparison, angstrom(abs) of fresh/slightly aged ones are typically 1.4-3.5. This low angstrom(abs) indicates a nearly complete loss of brown carbon, likely due to bleaching and/or evaporation, during the long-range transport. The nearly complete loss suggests that on global average, direct radiative forcing of BrC may be minor. Combining Mie calculations and the measured aerosol hygroscopicity, volatility and size distributions, we show that the high omega(529) and low angstrom(abs) values are best explained by an external mixture of non-absorbing organic particles and absorbing particles of large BC cores (> similar to 110 nm diameter) with thick non-absorbing coatings. The accelerated descent of the wildfire plume also led to strong increase of CCN concentration at the supersaturation levels representative of marine low clouds. The hygroscopicity parameter, kappa(CCN), of the aged wildfire aerosols varies from 0.2 to 0.4, substantially lower than that of background marine boundary layer aerosols. However, the high fraction of particles with large diameter (i.e., within accumulation size ranges, similar to 100-250 nm) compensates for the low values of., and as a result, the aged NA wildfire aerosols contribute more efficiently to CCN population. These results provide direct evidence that the long-range transported NA wildfires can strongly influence CCN concentration in remote marine boundary layer, therefore the radiative properties of marine low clouds. Given the expected increases of NA wildfire intensity and frequency and regular occurrence of dry intrusion following mid-latitude cyclones, the influence of NA wildfire aerosols on CCN and clouds in remote marine environment need to be further examined.

期刊论文 2020-06-01 DOI: 10.1016/j.envint.2020.105680 ISSN: 0160-4120

Fire is an important factor controlling the composition and thickness of the organic layer in the black spruce forest ecosystems of interior Alaska. Fire that burns the organic layer can trigger dramatic changes in the underlying permafrost, leading to accelerated ground thawing within a relatively short time. In this study, we addressed the following questions. (1) Which factors determine post-fire ground temperature dynamics in lowland and upland black spruce forests? (2) What levels of burn severity will cause irreversible permafrost degradation in these ecosystems? We evaluated these questions in a transient modeling-sensitivity analysis framework to assess the sensitivity of permafrost to climate, burn severity, soil organic layer thickness, and soil moisture content in lowland (with thick organic layers, similar to 80 cm) and upland (with thin organic layers, similar to 30 cm) black spruce ecosystems. The results indicate that climate warming accompanied by fire disturbance could significantly accelerate permafrost degradation. In upland black spruce forest, permafrost could completely degrade in an 18 m soil column within 120 years of a severe fire in an unchanging climate. In contrast, in a lowland black spruce forest, permafrost is more resilient to disturbance and can persist under a combination of moderate burn severity and climate warming.

期刊论文 2013-07-01 DOI: 10.1088/1748-9326/8/3/035030 ISSN: 1748-9326
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-7条  共7条,1页