The cyclic behavior of clay significantly influences the dynamic response of offshore wind turbines (OWTs). This study presents a practical bounding surface model capable of describing both cyclic shakedown and cyclic degradation. The model is characterized by a simple theoretical framework and a limited number of parameters, and it has been numerically implemented in ABAQUS through a user-defined material (UMAT) subroutine. The yield surface remains fixed at the origin with isotropic hardening, while a movable projection center is introduced to capture cyclic hysteresis behavior. Cumulative plastic deviatoric strain is integrated into the plastic modulus to represent cyclic accumulation. Validation against undrained cyclic tests on three types of clay demonstrates its capability in reproducing stress-strain hysteresis, cyclic shakedown, and cyclic degradation. Additionally, its effectiveness in solving finite element boundary value problems is verified through centrifuge tests on large-diameter monopiles. Furthermore, the model is adopted to analyze the dynamic response of monopile OWTs under seismic loading. The results indicate that, compared to cyclic shakedown, cyclic degradation leads to a progressive reduction in soil stiffness, which diminishes acceleration amplification, increases settlement accumulation, and results in higher residual excess pore pressure with greater fluctuation. Despite its advantages, this model requires a priori specification of the sign of the plastic modulus parameter cd to capture either cyclic degradation or shakedown behavior. Furthermore, under undrained conditions, the model leads pstabilization of the effective stress path, which subsequently results in underestimation of the excess pore pressure.
The Augmented Kalman Filter (AKF) has been applied previously for input-state estimation of offshore wind turbines (OWT). However, the accuracy of the estimated results depend on the chosen model, for which various complexities exist, making this a challenging task. Two of which are the lack of information required to model the Rotor-Nacelle Assembly (RNA), and the high uncertainty associated with the soil-structure-interaction (SSI). Therefore, the primary focus of this work is to avoid these limitations by considering a suitable substructure which eliminates the need to model the RNA and the SSI, thus significantly reducing uncertainties. The substructure is obtained by 'cutting' the OWT at the top of the tower and at the ground level. To define the model, the resulting substructure then only requires geometries and material properties for the monopile and tower; information which is often known with greater certainty. A numerical case study is presented to investigate the accuracy of the proposed approach for input-state estimation of a 15 MW OWT. A series of commonly used setups involving accelerometers and inclinometers are used and the effects on the predicted fatigue life of the structure are discussed. Additionally, a simple approximation of the wave loading is considered to estimate and account for its contribution to the dynamics of the substructure. The proposed approach is shown to be an effective solution for input-state estimation of OWTs when the RNA or SSI are unknown or associated with significant uncertainty.
In view of the pollution of unpaved road dust in the current mines, this study demonstrated the excellent dust suppression performance of the dust suppressant by testing the dynamic viscosity, penetration depth and mechanical properties of the dust suppressant, and apply molecular dynamics simulations to reveal the interactions between substances. The results showed that the maximum dust suppression rate was 97.75 % with a dust suppressant formulation of 0.1 wt% SPI + 0.03 wt% Paas + NaOH. The addition of NaOH disrupts the hydrogen bonds between SPI molecules, which allows the SPN to better penetrate the soil particles and form effective bonding networks. The SPI molecules rapidly absorb onto the surface of soil particles through electrostatic interactions and hydrogen bonds. The crosslinking between SPI molecules connects multiple soil particles, forming larger agglomerates. The polar side chain groups in the SPN interact with soil particles through dipole-dipole interactions, further stabilizing the agglomerates and resulting in an enhanced dust suppression effect. Soil samples treated with SPN exhibited higher compressive strength values. This is primarily attributed to the stable network structure formed by the SPN dust suppressant within the soil. Additionally, the SPI molecules and sodium polyacrylate (Paas) molecules in SPN contain multiple active groups, which interact under the influence of NaOH, restricting the rotation and movement of molecular chains. From a microscopic perspective, the SPN dust suppressant further strengthens the interactions between soil particles through mechanisms such as liquid bridge forces, which contribute to the superior dust suppression effect at the macroscopic level.
As a newly emerged solution for supporting the new generation of offshore wind turbines (OWTs), the pile-bucket foundation has received wide attention. However, little attention has been paid to the grouted connection that connects the monopile and bucket foundation. As the loadtransferring, yet vulnerable component, the fatigue mechanism of the grouted connection and its influence on the cyclic laterally-loaded response of OWT foundation are still not clear. In this study, a sophisticated three-dimensional (3D) finite element (FE) model of the pile-bucket foundation with grouted connection is constructed, which incorporates a hypoplastic clay model and the concrete damage plasticity (CDP) to consider the cyclic load effect on both soil and grout material. A modal analysis is first performed to verify the rationality of the proposed model. Then the influence of cyclic load frequency, load amplitude and stiffener arrangement on the accumulation of pile head displacement, stress distribution and crack development of the grouted connection is systematically analyzed. Results indicate that as load frequency approaches the eigen-frequency, the OWT structure tends to vibrate more intensively, leading to stress concentration and fatigue damage of the grouted material and rapid accumulation of the pile-head displacement. The influence of load amplitude on grout damage seems to be limited in the contact area in the simulated cases. Meanwhile, the installation of stiffeners slightly mitigates the pile head displacement accumulation, but also raises the risk of stress concentration and fatigue damage of the grouted connection. The numerical results reveal the load-transferring function and fatigue damage of the grouted connection, which could provide some reference for an optimized structure and dynamic design for the pile-bucket foundation under cyclic load.
The structural design of offshore wind turbines must account for numerous design load cases to capture various scenarios, including power production, parked conditions, and emergency or fault conditions under different environmental conditions. Given the stochastic nature of these external actions, deterministic analyses using characteristic values and safety factors, or Monte Carlo Simulations, are necessary. This process involves a large number of simulations, ranging from ten to a hundred thousand, to achieve a reliable and optimal structural design. To reduce computational complexity, practitioners can employ low-fidelity models where the soil-foundation system is either neglected or simplified using linear elastic models. However, medium to large cyclic soil-pile lateral displacements can induce soil hysteretic behaviour, potentially mitigating structural and foundation vibrations. A practical solution at the preliminary design stage entails using stiffness-proportional viscous damping to capture the damping generated by the soil-pile hysteresis. This paper investigates the efficacy of this simplified approach for the IEA 15 MW reference wind turbine on a large-diameter monopile foundation subjected to several operational and extreme wind speeds. The soil-pile interaction system is modelled through lateral and rotational springs in which a constant stiffness-proportional damping model is applied. The results indicate that the foundation damping generated by the nonlinear soil-pile interaction is significant and cannot be neglected. When fast analyses are required, the stiffness-proportional viscous damping model can be reasonably used to approximate the structural response of the wind turbine. This approach enhanced the accuracy of the computed responses, including the maximum bending moment at the mudline for ultimate limit design and damage equivalent loads for fatigue analysis, in comparison to methods that disregard foundation damping.
Seismic activity often triggers liquefaction in sandy soils, which coupled with initial vertical tensile loads, poses a significant threat to the stability of suction bucket foundations for floating wind turbines. However, there remains a notable dearth of studies on the dynamic response of these foundations under combined seismic and vertical tensile loads. Therefore, this study developed a numerical method for analyzing the dynamic response of suction bucket foundations in sandy soils under such combined loading conditions. Through numerical simulations across various scenarios, this research investigates the influence of key factors such as seismic intensity, spectral characteristics, as well as the magnitude and direction of tensile loads on the seismic response of suction buckets. The results revealed that the strong earthquake may cause the suction bucket foundation of floating wind turbines to fail due to excessive vertical upward displacement. This can be attributed to that the accumulation of excess pore water pressure reduces the normal effective stress on the outer wall of bucket, and consequently decreases the frictional resistance of bucket-soil interface. Additionally, the above factors significantly influence both the vertical displacement of the suction bucket and the development of pore pressure in the surrounding soil. The findings can provide valuable insights for the seismic safety assessment of suction bucket foundations used in tension-leg floating wind turbines.
Offshore wind turbines, crucial for global electricity generation, face significant challenges from harsh marine conditions, including strong wind, waves, and uneven seabeds. To optimize the foundation solution, this study investigates the lateral performance of helical monopiles, comparing conventional monopiles under cyclic loading, with a focus on variations in pile configuration and soil conditions. Model-scale experiments were conducted with helical piles subjected to both monotonic and one-way cyclic loading conditions. Key variations in the study include three soil densities (Dr = 35 %, 55 %, and 75 %), along with different slope conditions (Flat, 1V:5H, 1V:3H, 1V:2H) and pile positions (c = 0Dp, 2.5Dp, 5Dp, 7.5Dp). Additionally, the effect of load amplitudes (xi b = 50 %, 40 %, and 30 %) applied at a frequency of 0.25Hz for over 1000 cycles was examined. Results showed that helical piles outperformed conventional monopiles, exhibiting up to 25 % higher lateral load capacity, 30 % less accumulated rotation, and 20 % greater cyclic stiffness, especially in dense soils. Furthermore, the analysis revealed that the performance of helical piles significantly improved when placed nearer to the slope crest and in denser soils. Numerical simulations using PLAXIS 3D confirmed these experimental findings, demonstrating that helical piles consistently maintain superior lateral resistance and cyclic performance under varying loading conditions and slope configurations. This study underscores the potential of helical piles to enhance the stability ad performance of offshore wind turbine foundations, offering a more robust and efficient alternative to monopile systems.
The tetrapod jacket-supported offshore wind turbine is subjected to marine environmental loads, resulting in monotonic and cyclic lateral-compression-tension interaction behavior of the pile-soil system. Although the excellent applicability that has been demonstrated by three-dimensional numerical simulation for aiding the revelation of the mechanism of jacket foundation-soil interaction, a significant challenge remains in accurately reflecting the nonlinear stress-strain relationship and cyclic behavior of the soil, and others. Finite element numerical models are therefore established for laterally loaded tetrapod jacket pile foundations in this study, and a bounding surface model is adopted to simulate the elastoplastic characteristics and cyclic ratchet effect of the soil. Subsequently, a parametric analysis is conducted on different net spacings and aspect ratios of the jacket base-piles to investigate the pile deformation characteristics, bearing mechanisms, evolution of pile-soil interaction, and the internal force development under monotonic and cyclic conditions, respectively. The results indicate that under monotonic loading, the pile deformation pattern transitions from a flexible pile mode to a rigid rotational deformation mode as the aspect ratio decreases. Under cyclic loading, attention should be paid to the asynchronous accumulation of axial forces within the base-piles and its impact on overall bearing performance.
Drag embedded anchors (DEA) are widely used in offshore engineering. The anchor foundations are installed in the seabed through the drag force applied by the mooring line and provide holding capacity to marine structures. Offshore wind farms in Taiwan are located in active earthquake zones, where a considerable amount of sandy soil at the upper layer of seabed results in a high potential for soil liquefaction. Since DEA are a promising option for floating wind turbines, this study conducted a shaking table test on two 1/30-scale anchors in medium dense sand to investigate the dynamic behavior of DEA during earthquakes and after excess pore water pressure dissipation. The test results reveal no significant impact on the orientation of the anchors, which could be due to the uplift force from the excess pore water pressure acting on the fluke. After the excess pore water pressure dissipates, the soil density increases, and the fluke angle becomes favorable, thus increasing the anchor's holding capacity when subjected to additional drag.
The majority of European forests are managed and influenced by natural disturbances, with wind being the dominant agent, both of which affect the ecosystem's carbon budget. Therefore, investigating the combined effect of wind damage and different soil preparation practices on forest carbon pools is of great importance. This study examines changes in carbon stocks in the soil and biomass of two 5-year-old Scots pine stands (namely Tlen1 and Tlen2), which were established approximately 2 years after a large-scale wind disturbance in northwestern Poland. These neighboring sites differ in terms of the reforestation methods applied, particularly regarding soil preparation: ploughing disc trenching at Tlen1 and partial preparation through local manual scalping at Tlen2. Using nearby forest soils as the best available reference for the pre-windthrow state, it was estimated that the total carbon stock in the soil (up to 50 cm depth, both organic and mineral) was depleted by approximately 17 % at Tlen1 and 7 % at Tlen2. The between-site differences were around 18 %, which nearly doubled when considering only the top 20 cm of the soil profile. In contrast, the total biomass, as well as the carbon stock in biomass, were significantly higher at the site with soil prepared using moderate ploughing (Tlen1) compared to the area with partial soil preparation (Tlen2). Our findings indicate that ploughing disc trenching, aimed mainly at weed removal and improving soil properties, significantly enhanced Scots pine seedlings' growth, survival, and development during the first four years after planting. Finally, when both carbon stock estimates are pooled together, regardless of the chosen technique, the growing biomass in the investigated stands did not fully compensate for the carbon losses caused by mechanical soil preparation. However, in the short term, the overall change in the ecosystem's carbon balance was only slightly negative and comparable between the two sites.