Brown carbon (BrC), known as light-absorbing organic aerosol in the near-ultraviolet (UV) and short visible region, plays a significant role in the global and regional climate change. A detailed understanding of the spectral optical properties of BrC is beneficial for reducing the uncertainty in radiative forcing calculation. In this work, the spectral properties of primary BrC were investigated by using a four-wavelength broadband cavity-enhanced albedometer with central wavelengths at 365, 405, 532 and 660 nm. The BrC samples were generated by the pyrolysis of three types of wood. During the pyrolysis process, the measured average single scattering albedo (SSA) at 365 nm was about 0.66 to 0.86, where the average absorption angstrom ngstrom exponent (AAE) was between 5.8 and 7.8, and the average extinction angstrom ngstrom exponent (EAE) was within 2.1 to 3.5. The full spectral measurement of SSA (300-700 nm) was realized by an optical retrieval method and the retrieved SSA spectrum was directly applied to evaluate aerosol direct radiative forcing (DRF) efficiency. The DRF efficiency over ground of various primary BrC emissions increased from 5.3 % to 68 % as compared to the non-absorbing organic aerosol assumption. A decrease of about 35 % in SSA would cause the DRF efficiency over ground to change from cooling effect to warming effect (from -0.33 W/m2 to +0.15 W/m2) in the near-UV band (365-405 nm). The DRF efficiency over ground of strongly absorptive primary BrC (lower SSA) contributed 66 % more than weakly absorptive primary BrC (higher SSA). These findings proved the importance of broadband spectral properties of BrC, which are substantial for radiative forcing evaluation of BrC and should be considered in global climate models.
Portable aethalometers are commonly used for online measurements of light-absorbing carbonaceous particles (LAC). However, they require strict calibration. In this study, the performance of a micro-aethalometer (MA200 with polytetrafluoroethylene filter) in charactering brown carbon aerosol (BrC) absorption was evaluated in comparison with reference materials and techniques that included bulk solution absorbance and Mie-theory based particle extinction retrieval via broadband cavity enhanced spectrometer (BBCES). Continuous-wavelength resolved (300-650 nm) imaginary refractive index (k(BrC)) was derived with these methods for various BrC proxies and standard materials representing a wide range of sources and absorbing abilities, including the strongly absorbing nigrosin, pahokee peat fluvic acid (PPFA), tar aerosol from wood pyrolysis, humic-like substance (HULIS) separated from wood smoldering burning emissions, and secondary organic aerosols (SOA) from photochemical oxidation of indole and naphthalene in the presence of NOx. The BrC and nigrosin optical results by bulk solution absorption are comparable with the properties retrieved from BBCES. The MA200 raw measurements provide reliable absorption Angstrom exponent (AAE) but overestimate kBrC largely. The parameterized overestimates against reference methods depend on light absorption strength, so that the MA200 overestimates more for the less absorbing BrC. The correction factor for MA200 can be expressed well as an exponential function of kBrC or particle single scattering albedo (SSA), and also as a power-law function of the MA200 raw results derived BrC mass absorption efficiency (MAE). The ensemble correction factor regressed for all these BrC and nigrosin is 2.8 based on bulk absorption and 2.7 using BBCES result as reference. Simple radiative forcing (SRF) calculations for different scenarios using the correction for MA200, show consistent SRF when using the aethalometer results after the k(BrC)-dependent correction. (C) 2021 Elsevier B.V. All rights reserved.