共检索到 4

在冰湖编目工作中,从海量遥感数据快速准确获取冰湖边界具有重要意义,发展基于遥感数据的冰湖边界自动化提取方法是关键。本研究改进了基于YOLOv5-Seg网络的实例分割模型,并应用于山地冰湖自动化提取。结果显示,使用坐标注意力机制(Coordinate-Attention,CA),提高网络对冰湖目标的关注程度;在原始3个检测层的基础上添加小目标检测层,增强网络对小面积冰湖检测能力;修改上采样方法为转置卷积,解决了最近邻上采样丢失特征问题。改进的YOLOv5-Seg网络比原始网络平均精度提升2.7%,达到75.1%,比目前其他主流算法精度高10%。利用改进的YOLOv5-Seg网络的实例分割模型和Sentinel-2卫星影像,发现2022年兴都库什—喀喇昆仑—喜马拉雅地区(HKH),共有10 668个冰湖正例,共计768.3 km2。该研究通过深度卷积神经网络和多源遥感数据,为大地理区域的自动冰湖制图提供了技术支持。

期刊论文 2024-07-18

在冰湖编目工作中,从海量遥感数据快速准确获取冰湖边界具有重要意义,发展基于遥感数据的冰湖边界自动化提取方法是关键。本研究改进了基于YOLOv5-Seg网络的实例分割模型,并应用于山地冰湖自动化提取。结果显示,使用坐标注意力机制(Coordinate-Attention,CA),提高网络对冰湖目标的关注程度;在原始3个检测层的基础上添加小目标检测层,增强网络对小面积冰湖检测能力;修改上采样方法为转置卷积,解决了最近邻上采样丢失特征问题。改进的YOLOv5-Seg网络比原始网络平均精度提升2.7%,达到75.1%,比目前其他主流算法精度高10%。利用改进的YOLOv5-Seg网络的实例分割模型和Sentinel-2卫星影像,发现2022年兴都库什—喀喇昆仑—喜马拉雅地区(HKH),共有10 668个冰湖正例,共计768.3 km2。该研究通过深度卷积神经网络和多源遥感数据,为大地理区域的自动冰湖制图提供了技术支持。

期刊论文 2024-07-18

高原高寒地区环境复杂、昼夜温差大,对铁路建设与运营产生不良影响,容易发生由于钢轨内部伤损引起的断裂事故。研究基于YOLOv5的超声波图像识别技术在青藏铁路钢轨探伤检测中的应用,特别是针对轨头核伤、轨面鱼鳞伤等常见伤损类型进行检测。通过智能钢轨探伤仪采集高寒地段钢轨数据,以YOLOv5方法对数据集进行整理、处理和模型训练,精准识别和定位轨头核伤、轨面鱼鳞伤等损伤。研究表明,基于YOLOv5的模型在识别和定位各类钢轨损伤方面具有很高的准确性和实时性,可以同时进行目标检测和类别分类,并能在保持较高准确度的同时实现快速检测。提供一种新的、更有效的钢轨探伤检测数据分析方法,有助于提高铁路安全和运营效率。

期刊论文 2023-09-18 DOI: 10.19549/j.issn.1001-683x.2023.06.21.002

高原高寒地区环境复杂、昼夜温差大,对铁路建设与运营产生不良影响,容易发生由于钢轨内部伤损引起的断裂事故。研究基于YOLOv5的超声波图像识别技术在青藏铁路钢轨探伤检测中的应用,特别是针对轨头核伤、轨面鱼鳞伤等常见伤损类型进行检测。通过智能钢轨探伤仪采集高寒地段钢轨数据,以YOLOv5方法对数据集进行整理、处理和模型训练,精准识别和定位轨头核伤、轨面鱼鳞伤等损伤。研究表明,基于YOLOv5的模型在识别和定位各类钢轨损伤方面具有很高的准确性和实时性,可以同时进行目标检测和类别分类,并能在保持较高准确度的同时实现快速检测。提供一种新的、更有效的钢轨探伤检测数据分析方法,有助于提高铁路安全和运营效率。

期刊论文 2023-09-18 DOI: 10.19549/j.issn.1001-683x.2023.06.21.002
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-4条  共4条,1页