共检索到 13

Study region: The source area of the Yangtze River, a typical catchment in the cryosphere on the Tibet Plateau, was used to develop and validate a distributed hydrothermal coupling model. Study focus: Climate change has caused significant changes in hydrological processes in the cryosphere, and related research has become hot topic. The source area of the Yangtze River (SAYR) is a key catchment for studies of hydrological processes in the cryosphere, which contains widespread glacier, snow, and permafrost. However, the current hydrological modeling of the SAYR rarely depicts the process of glacier/snow and permafrost runoff from the perspective of coupled water and heat transfer, resulting in distortion of simulations of hydrological processes. Therefore, we developed a distributed hydrothermal coupling model, namely WEP-SAYR, based on the WEP-L (Water and energy transfer process in large river basins) model by introducing modules for glacier and snow melt and permafrost freezing and thawing. New hydrological insights for the region: In the WEP-SAYR model, the soil hydrothermal transfer equations were improved, and a freezing point equation for permafrost was introduced. In addition, the glacier and snow meltwater processes were described using the temperature index model. Compared to previously applied models, the WEP-SAYR portrays in more detail glacier/ snow melting, dynamic changes in permafrost water and heat coupling, and runoff dynamics, with physically meaningful and easily accessible model parameters. The model can describe the soil temperature and moisture changes in soil layers at different depths from 0 to 140 cm. Moreover, the model has a good accuracy in simulating the daily/monthly runoff and evaporation. The Nash-Sutcliffe efficiency exceeded 0.75, and the relative error was controlled within +/- 20 %. The results showed that the WEP-SAYR model balances the efficiency of hydrological simulation in large scale catchments and the accurate portrayal of the cryosphere elements, which provides a reference for hydrological analysis of other catchments in the cryosphere.

2024-12-01 Web of Science

There is 78 % permafrost and seasonal frozen soil in the Yangtze River's Source Region (SRYR), which is situated in the middle of the Qinghai-Xizang Plateau. Three distinct scenarios were developed in the Soil and Water Assessment Tool (SWAT) to model the effects of land cover change (LCC) on various water balance components. Discharge and percolation of groundwater have decreased by mid-December. This demonstrates the seasonal contributions of subsurface water, which diminish when soil freezes. During winter, when surface water inputs are low, groundwater storage becomes even more critical to ensure water supply due to this periodic trend. An impermeable layer underneath the active layer thickness decreases GWQ and PERC in LCC + permafrost scenario. The water transport and storage phase reached a critical point in August when precipitation, permafrost thawing, and snowmelt caused LATQ to surge. To prevent waterlogging and save water for dry periods, it is necessary to control this peak flow phase. Hydrological processes, permafrost dynamics, and land cover changes in the SRYR are difficult, according to the data. These interactions enhance water circulation throughout the year, recharge of groundwater supplies, surface runoff, and lateral flow. For the region's water resource management to be effective in sustaining ecohydrology, ensuring appropriate water storage, and alleviating freshwater scarcity, these dynamics must be considered.

2024-12-01 Web of Science

Study region: The source region of the Yangtze River in the Qinghai-Tibet Plateau, China. Study focus: In the context of global warming, conducting a comprehensive study on the hydrothermal processes and their influencing factors in the permafrost active layer of the Tibetan Plateau is crucial for gaining a better understanding of the ecohydrological processes in alpine grasslands. In this study, we analyzed differences in soil temperature and humidity change patterns in the active layer of four alpine grassland types in the Totuohe Basin of the Yangtze River source area. We aimed to discuss the influence of vegetation, soil, and other factors on the hydrothermal mechanism of the active layer. The main research results are as follows: (1) Significant differences in the active layer's hydrothermal regime, with higher vegetation cover correlating to lower thaw indices and better moisture conditions. (2) Vegetation and water content strongly influence thermal conditions and active layer thickness. In high-cover alpine meadows, ground surface temperature is lower with a 200 cm active layer, while swamp meadows have a shallowest layer at 160 cm. (3) Deeper active layer moisture is influenced by freezing and thawing, while shallower layers are affected by warm-season precipitation and soil texture. (4) Negative heat fluxes in the topsoil of alpine swamp and high-cover meadows indicate substantial heat release, likely contributing to permafrost preservation due to high active layer water content. New hydrological insights for the region: (1) Vegetation cover significantly influences the thermal and moisture conditions of the active layer, with higher vegetation associated with lower thaw indices and better moisture conditions. (2) Soil moisture distribution within the active layer is controlled by both freeze-thaw cycles and warm-season precipitation, indicating complex interactions between seasonal processes and soil properties.

2024-08-01 Web of Science

The Yangtze River Source Region (YaRSR) is located in the third polar region, the most threatened zone by global warming after the Arctic. Permafrost covers eighty percent of the total area of YaRSR, while the rest is seasonally frozen ground. Due to a significant rise in air temperature, degradation of the permafrost could occur. Permafrost coverage in a river basin greatly controls its hydrology. This study focuses on hydrological modeling in this permafrost environment using the Soil and Water Assessment Tool (SWAT). The SWAT model was calibrated (1985-2000) and validated (2001-2015) on a daily time step. The results were also compared on a monthly time scale. An impermeable layer was introduced within the SWAT model to represent the permafrost conditions. The streamflow is strongly dependent on the seasonal variation of precipitation and temperature, and the rising limb of the hydrograph shows the melting of snow, the contribution of soil water, and thawing of permafrost during the spring-summer season. The permafrost layer well restricted the deep percolation of water. During the spring season, streamflow mainly consists of surface runoff because of the frozen soils. Permafrost and frozen ground thawing lead to an increase in the contribution of groundwater flow to streamflow. Ultimately, the frozen ground depletes as the temperature gets close to the freezing point. This study also describes the SWAT model appli-cation to better analyze and understand the hydrology of the permafrost/frozen ground with limited data availability.

2022-12-01 Web of Science

The carbon release and transport in rivers are expected to increase in a warming climate with enhanced melting. We present a continuous dataset of DOC in the river, precipitation, and groundwater, including air temperature, discharge, and precipitation in the source region of the Yangtze River (SRYR). Our study shows that the average concentrations of DOC in the three end-members are characterized as the sequence of groundwater > precipitation > river, which is related to the water volume, cycle period, and river flow speed. The seasonality of DOC in the river is observed as the obvious bimodal structure at Tuotuohe (TTH) and Zhimenda (ZMD) gauging stations. The highest concentration appears in July (2.4 mg L-1 at TTH and 2.1 mg L-1 at ZMD) and the secondary high value (2.2 mg L-1 at TTH 1.9 mg L-1 at ZMD) emerges from August to September. It is estimated that 459 and 6751 tons of DOC are transported by the river at TTH and ZMD, respectively. Although the wet deposition flux of DOC is nearly ten times higher than the river flux, riverine DOC still primarily originates from soil erosion of the basin rather than precipitation settlement. Riverine DOC fluxes are positively correlated with discharge, suggesting DOC fluxes are likely to increase in the future. Our findings highlight that permafrost degradation and glacier retreat have a great effect on DOC concentration in rivers and may become increasingly important for regional biogeochemical cycles.

2022-02-01 Web of Science

Terrestrial water storage (TWS) is a key variable in global and regional hydrological cycles. In this study, the TWS changes in the Yangtze River Basin (YRB) were derived using the Lagrange multiplier method (LMM) from Gravity Recovery and Climate Experiment (GRACE) data. To assess TWS changes from LMM, different GRACE solutions, different hydrological models, and in situ data were used for validation. Results show that TWS changes from LMM in YRB has the best performance with the correlation coefficients of 0.80 and root mean square error of 1.48 cm in comparison with in situ data. The trend of TWS changes over the YRB increased by 10.39 +/- 1.27 Gt yr(-1) during the 2003-2015 period. Moreover, TWS change is disintegrated into the individual contributions of hydrological components (i.e., glaciers, surface water, soil moisture, and groundwater) from satellite data, hydrologic models, and in situ data. The estimated changes in individual TWS components in the YRB show that (1) the contribution of glaciers, surface water, soil moisture, and groundwater to total TWS changes is 15%, 12%, 25% and 48%, respectively; (2) Geladandong glacier melt from CryoSat-2/ICESat data has a critical effect on TWS changes with a correlation coefficients of -0.51; (3) the Three Gorges Reservoir Impoundment has a minimal effect on surface water changes (mainly lake water storage), but it has a substantial effect on groundwater storage (GWS), (4) the Poyang and Doting Lake water storage changes are mainly caused by climate change, (5) soil moisture storage change is mainly influenced by surface water, (6) human-induced GWS changes accounted for approximately half of the total GWS. The results of this study can provide valuable information for decision-making in water resources management.

2021-04-01 Web of Science

The source region of the Yangtze River (SRYR), located on the eastern Tibetan Plateau, is an essential part of the Asian Water Tower and plays an important role in the downstream water resources. Significant changes in frozen ground caused by increases in air temperature have been widely reported in the past several decades, which has greatly affected regional runoff. This study evaluated the spatiotemporal variations in frozen ground and hydrological components by utilizing a geomorphology-based eco-hydrological model (GBEHM) and investigated the reasons for runoff changes based on the Budyko framework. The results showed that the area with an elevation range of 4700-4800 m located in the permafrost region was the main source area of runoff generation from 1981 to 2015. Compared with the permafrost region, the seasonally frozen ground (SFG) region had a larger ratio of annual evapotranspiration to annual precipitation, although the aridity indices in the two regions were very similar. From 1981 to 2015, the mean value of the maximum frozen depth of SFG (MFDSFG) decreased by 12.3 cm/10 a and the mean value of the active layer thickness (ALT) of permafrost increased by 4.2 cm/10 a. The annual runoff in the SFG region decreased, while that in the permafrost region increased. Runoff change was more sensitive to precipitation change in the higher altitude regions that were mainly covered by permafrost than in the lower altitude regions that were mainly covered by the SFG, while the evapotranspiration change in the transition zone was more sensitive to climate change. An abrupt change in the annual runoff time series was detected in 1989, 2004, and 2004 in the SFG region, the permafrost region and the entire SRYR, respectively, and the annual runoff change from period 1 (1981 to change point) to period 2 (change point + 1 to 2015) were - 25.7 mm, 33.8 mm and 25.8 mm respectively. Frozen ground degradation contributed changes of -15.0 mm, - 8.8 mm and -11.6 mm to the annual runoff in the SFG region, the permafrost region and the entire SRYR, respectively. This result implied that frozen ground degradation had a negative impact on regional runoff in the SRYR. These findings deepen our understanding of frozen ground and its hydrological changes and are helpful for water resource management in the SRYR.

2020-11-01 Web of Science

The understanding of temperature trends in high elevation mountain areas is an integral part of climate change research and it is critical for assessing the impacts of climate change on water resources including glacier melt, degradation of soils, and active layer thickness. In this study, climate changes were analyzed based on trends in air temperature variables (T-max, T-min, T-mean), and Diurnal Temperature Range (DTR) as well as elevation-dependent warming at annual and seasonal scales in the Headwaters of Yangtze River (HWYZ), Qinghai Tibetan Plateau. The Base Period (1965-2014) was split into two subperiods; Period-I (1965-1989) and Period-II (1990- 2014) and the analysis was constrained over two subbasins; Zhimenda and Tuotuohe. Increasing trends were found in absolute changes in temperature variables during Period-II as compared to Period-I. T-max, T-min, and T-mean had significant increasing trends for both sub-basins. The highest significant trends in annual time scale were observed in T-min (1.15 degrees C decade(-1)) in Tuotuohe and 0.98 degrees C decade(-1) in Zhimenda sub-basins. In Period-II, only the winter season had the highest magnitudes of T-max and T-min 0.58 degrees C decade(-1) and 1.26 degrees C decade(-1) in Tuotuohe subbasin, respectively. Elevation dependent warming analysis revealed that T-max, T-min and T-mean trend magnitudes increase with the increase of elevations in the middle reaches (4000 m to 4400 m) of the HWYZ during Period-II annually. The increasing trend magnitude during Period-II, for T-max, is 1.77, 0.92, and 1.31 degrees C decade(-1), for T-min 1.20, 1.32 and 1.59 degrees C decade(-1), for T-mean 1.51, 1.10 and 1.51 degrees C decade(-1) at elevations of 4066 m, 4175 m and 4415 m respectively in the winter season. T-mean increases during the spring season for > 3681 m elevations during Period-II, with no particular relation with elevation dependency for other variables. During the summer season in Period- II, T-max, T-min, T-mean increases with the increase of elevations (3681 m to 4415 m) in the middle reaches of HWYZ. Elevation dependent warming (EDW), the study concluded that magnitudes of T-min are increasing significantly after the 1990s as compared to T-max in the HWYZ. It is concluded that the climate of the HWYZ is getting warmer in both sub-basins and the rate of warming was more evident after the 1990s. The outcomes of the study provide an essential insight into climate change in the region and would be a primary index to select and design research scenarios to explore the impacts of climate change on water resources.

2020-03-01 Web of Science

Accelerating multiphase water transformation affects runoff processes and components greatly and have changed the spatiotemporal patterns of water resources in the Third Polar Region. The source region of the Yangtze River is one location where accelerated warming has resulted in the gradual extension of the ablation period since 1990. This has caused the acceleration of multiphase water transformation, characterized by increases in the rate of glacial retreat, maximum freezing depth, and annual actual evapotranspiration and by decreased snowfall. In response, the total runoff increased by 53% at the Tuotuohe national hydrological station (TTH) and 6% at the Zhimenda national hydrological station (ZMD) during the periods 1961-1990 and 1991-2017, respectively. Under these conditions, runoff components were being determined based on stable isotope tracing. Substantial seasonal differences in delta O-18 (delta D) among precipitation, river water, supra-permafrost water, and glaciers snow meltwater indicate that the runoff has been replenished by multiple components, and that these first infiltrate the ground, becoming part of the groundwater, and then recharge river water. Supra-permafrost water rather than precipitation now dominates river water. Based on the end-member mixing analysis model, supra-permafrost water, precipitation, and glaciers snow meltwater accounted for 51%, 26%, and 23% of river water at the TTH station from June 2016 to May 2018; the corresponding values at the ZMD station were 49%, 34%, and 17%. Additionally, there are also differences in the seasonal contributions of runoff components to river water. Seasonal variations in the freezing and thawing of the active layer directly trigger the runoff process. Future research should be focused on determining the mechanisms underlying the dynamics of precipitation-supra-permafrost water-runoff, which will aid the assessment of the impacts of an unstable Asian Water Tower on water resources.

2020-03-01 Web of Science

Direct in-situ measurements of aerosol mixing state, optical properties, and chemical composition were performed in summertime of 2014 at Nanjing, China. Aerosols were predominantly internally mixed, with an average effective density of 1.30-1.63 g cm(-3) for 50-230 ran particles, increasing with size. Externally mixed, relatively fresh black carbon (BC) was only episodically observed, with a second mode peaking at 0.51-0.91 g cm(-3). For particles of 110, 140, 185 and 230 nm, BC accounted for 1.7 +/- 1.2%, 4.8 +/- 3.0%, 5.3 +/- 3.3%, and 5.1 +/- 3.3% of the particle mass, while being present in 26.4 +/- 5.3%, 58.1 +/- 27.7%, 59.8 +/- 25.4%, and 62.4 +/- 27.9% of the particle number concentration, indicating that BC was heavily coated and may contribute significantly to atmospheric aerosol population. Substantial BC absorption enhancement was observed with Eat of 1.41 +/- 0.39, 1.42 +/- 0.40 and 1.35 +/- 0.38 at 405, 532 and 781 nm, respectively. High volatile aerosol components, in particular nitrate, were found to play vital roles in BC's absorption enhancement. High E-abs values were associated with elevated NOx and RH. A clear diurnal pattern was observed for E-abs supporting a significant impact from traffic emissions, which stood in contrast with previous studies reporting very thin coating and negligible absorption enhancement for traffic emitted BC. High concentrations of NOx co-emitted with BC from traffic sources and its conversion to particulate nitrate likely contributed to the aging and increased absorption of BC particles, which was even enhanced under high RH above the deliquescence point of ammonium nitrate. Therefore, our results indicated that the mitigation of NOx emissions from traffic was critical for reducing the positive radiative forcing induced by BC, especially under high RH conditions.

2020-02-01 Web of Science
  • 首页
  • 1
  • 2
  • 末页
  • 跳转
当前展示1-10条  共13条,2页