Our understanding of tundra fire effects in Northern Alaska is limited because fires have been relatively rare. We sampled a 70+ year -old burn visible in a 1948 aerial photograph for vegetation composition and structure, soil attributes, terrain rugosity, and thermokarst pit density. Between 1948 and 2017 the burn initially became wetter as ice wedges melted but then drained and dried as the troughs became hydrologically connected. The reference tundra has become wetter over the last few decades and appears to be lagging through a similar sequence. The burn averaged 2.5 degrees C warmer than the reference tundra at 30 cm depth. Thinning of organic soil following fire appears to dramatically accelerate the background degradation of ground-ice features in response to climate change and promotes a plant community that is distinct in terms of taxa and structure, dominated by tall willows and other competitive, rather than cold-tolerant, species. The cover of sedges and mosses is low while that of willows and grass is high relative to the reference tundra. The changes in plant community composition and structure, increasing ground temperature, and thermokarst lead us to expect the observed biophysical changes to the tundra will persist centuries into the future.
2024-03-01 Web of ScienceRapid permafrost degradation is observed in northern regions as a result of climate change and expanding economic development. Associated increases in active layer depth lead to thermokarst development, resulting in irregular surface topography. In Central Yakutia, significant areas of the land surface have been deteriorated by thermokarst; however, no mitigation or land rehabilitation efforts are undertaken. This paper presents the results of numerical modeling of the thermal response of permafrost to changes in the active layer hydrothermal regime using field data from the village of Amga, Republic of Sakha (Yakutia), and mathematical analysis. The results suggest that restoring a thick ice-enriched layer will require increasing the pre-winter soil moisture contents in order to increase the effective heat capacity of the active layer. Snow removal or compaction during the winter is recommended to maximize permafrost cooling. The thickness of the restored transition layer varies from 0.3 to 1.3 m depending on soil moisture contents in the active layer. The modeling results demonstrate that damaged lands can be restored through a set of measures to lower the subsurface temperatures. A combination of the insulating layer (forest vegetation) and the high heat capacity layer (transition layer) in the atmosphere-ground system would be more effective in providing stable geocryological conditions.
2023-01-01 Web of ScienceThe release of greenhouse gases from the large organic carbon stock in permafrost deposits in the circumarctic regions may accelerate global warming upon thaw. The extent of this positive climate feedback is thought to be largely controlled by the microbial degradability of the organic matter preserved in these sediments. In addition, weathering and oxidation processes may release inorganic carbon preserved in permafrost sediments as CO2, which is generally not accounted for. We used C-13 and C-14 analysis and isotopic mass balances to differentiate and quantify organic and inorganic carbon released as CO2 in the field from an active retrogressive thaw slump of Pleistocene-age Yedoma and during a 1.5-years incubation experiment. The results reveal that the dominant source of the CO2 released from freshly thawed Yedoma exposed as thaw mound is Pleistocene-age organic matter (48-80%) and to a lesser extent modern organic substrate (3-34%). A significant portion of the CO2 originated from inorganic carbon in the Yedoma (17-26%). The mixing of young, active layer material with Yedoma at a site on the slump floor led to the preferential mineralization of this young organic carbon source. Admixtures of younger organic substrates in the Yedoma thaw mound were small and thus rapidly consumed as shown by lower contributions to the CO2 produced during few weeks of aerobic incubation at 4 degrees C corresponding to approximately one thaw season. Future CO2 fluxes from the freshly thawed Yedoma will contain higher proportions of ancient inorganic (22%) and organic carbon (61-78%) as suggested by the results at the end, after 1.5 years of incubation. The increasing contribution of inorganic carbon during the incubation is favored by the accumulation of organic acids from microbial organic matter degradation resulting in lower pH values and, in consequence, in inorganic carbon dissolution. Because part of the inorganic carbon pool is assumed to be of pedogenic origin, these emissions would ultimately not alter carbon budgets. The results of this study highlight the preferential degradation of younger organic substrates in freshly thawed Yedoma, if available, and a substantial release of CO2 from inorganic sources.
2022-01-19 Web of ScienceThe most massive and fast-eroding thaw slump of the Northern Hemisphere located in the Yana Uplands of Northern Yakutia was investigated to assess in detail the cryogenic inventory and carbon pools of two distinctive Ice Complex stratigraphic units and the uppermost cover deposits. Differentiating into modern and Holocene near-surface layers (active layer and shielding layer), highest total carbon contents were found in the active layer (18.72 kg m(-2)), while the shielding layer yielded a much lower carbon content of 1.81 kg m(-2). The late Pleistocene upper Ice Complex contained 10.34 kg m(-2)total carbon, and the mid-Pleistocene lower Ice Complex 17.66 kg m(-2). The proportion of organic carbon from total carbon content is well above 70% in all studied units with 94% in the active layer, 73% in the shielding layer, 83% in the upper Ice Complex and 79% in the lower Ice Complex. Inorganic carbon is low in the overall structure of the deposits.
2020-09-01 Web of SciencePleistocene yedoma sediments store large amounts of soil organic matter (SOM) and are vulnerable to permafrost degradation. Here we contribute to our understanding of yedoma SOM dynamics and potential response to thaw, by molecular characterization of samples from a 5.7 m yedoma exposure, as well as upper permafrost samples that were previously incubated, using Thermally assisted Hydrolysis and Methylation (THM-GC-MS). In general, the SOM is derived from aliphatic material (including cutin and suberin), phenols (lignin, sphagnum acid), polysaccharides and N-containing components (largely microbial SOM). Soil organic carbon (SOC) content and molecular SOM composition follow a sawtooth pattern where local maxima in SOC coincide with lignin and aliphatic material that experienced only slight degradation, and minima with degraded plant-derived SOM and microbial tissue, representing a stratified cryopedolith. The SOC-depleted top 0.9 m (active layer and transition zone) is enriched in microbial SOM probably due to recent thawing. Comparison with CO2 respiration rates indicates that SOM of microbial origin (low C/N) is more labile than aliphatic SOM from well-preserved plant tissue (high C/N). However, we argue that the more stable aliphatic SOM in SOC-rich layers might also be vulnerable to decay, which could, due to its abundance in SOC-rich layers, dominate overall Yedoma C losses due to thermal erosion.
2018-02-01 Web of ScienceEastern Siberia Russia is currently experiencing a distinct and unprecedented rate of warming. This change is particularly important given the large amounts of carbon stored in the yedoma permafrost soils that become vulnerable to thaw and release under warming. Data from this region pertaining to year-round carbon, water, and energy fluxes are scarce, particularly in sensitive ecotonal ecosystems near latitudinal treeline, as well as those already impacted by permafrost thaw. Here we investigated the interannual and seasonal carbon dioxide, water, and energy dynamics at an ecotonal forested site and a disturbed thermokarst-impacted site. The ecotonal site was approximately neutral in terms of CO2 uptake/release, while the disturbed site was either a source or neutral. Our data suggest that high rates of plant productivity during the growing season at the disturbed site may, in part, counterbalance higher rates of respiration during the cold season compared to the ecotonal site. We also found that the ecotonal site was sensitive to the timing of the freezeup of the soil active layer in fall, releasing more CO2 when freezeup occurred later. Both sites showed a negative water balance, although the ecotonal site appeared more sensitive to dry conditions. Water use efficiency at the ecotonal site was lower during warmer summers. Overall, these Siberian measurements indicate ecosystem sensitivity to warmer conditions during the fall and to drier conditions during the growing season and provide a better understanding of ecosystem response to climate in a part of the circumpolar Arctic where current knowledge is weakest. Plain Language Summary As Siberia warms, the frozen soils known as permafrost start to thaw, causing an irregular terrain of pits and mounds called thermokarst. Large amounts of carbon in Siberian soils have been locked away in permafrost for thousands of years, becoming vulnerable to release under thaw and thermokarst formation. This will potentially result in large amounts of additional greenhouse gases in the atmosphere, amplifying climate warming. We examined carbon dioxide (CO2) fluxes over multiple years at two sites in northeastern Siberia, an ecotonal site that lies at the transition between the boreal forest and tundra biomes, and a site with thermokarst. We found that the ecotonal site is carbon neutral, consuming the same amount of CO2 as it takes up from the atmosphere. However, this site releases greater amounts of CO2 in years when soil freeze occurred later, which is expected to become common in the future. The thermokarst site released significantly more CO2, but it was also marked by greater plant growth, thereby off-setting some of the CO2 lost. Due, in part, to a lack of data, models represent terrestrial ecosystem carbon dynamics in Siberia poorly and do not take into changes in carbon cycling that occur with thermokarst formation.
2017-10-01 Web of ScienceThawing permafrost supplies dissolved organic carbon (DOC) to aquatic systems; however, the magnitude, variability and fate of this DOC is not well constrained. Our objective was to examine DOC respiration from seasonally thawed and near-surface (<1.5 m) permafrost soils collected from five locations in the Kolyma River Basin, north-east Russia. We measured soil organic carbon (OC) content, water-soluble macronutrients (DOC, NH4, PO4) and the heterotrophic respiration potentials of soil extract DOC in five-day laboratory incubations. DOC concentrations ranged from 2.8 to 27.9 mg L-1 (n = 14). Carbon respiration was 0.03-0.47 mg C (n = 16) and 8.7-31.4%, total DOC (n = 14). While DOC concentration was a function of soil OC concentration, we did not find a relationship between C respiration and soil OC or DOC concentrations. Respiration was highest in the top active layer, but varied widely among sites, and lowest at the bottom of the active layer. Respiration from yedoma varied across sites (0.04-0.47 mg C respired, 8.7-31.4% total DOC). Despite the small sample size, our study indicates near-surface soils and permafrost are spatially variable in terms of both soil OC content and C respiration rates, and also that OC contents do not predict C respiration rates. While a larger sample size would be useful to confirm these results at broader geographic scales, these initial results suggest that soil OC heterogeneity should be considered in efforts to determine the fate of soil OC released from permafrost-dominated terrestrial ecosystems to aquatic ecosystems following permafrost thaw.
2017-01-01 Web of ScienceThe fate of permafrost carbon upon thaw will drive feedbacks to climate warming. Here we consider the character and context of dissolved organic carbon (DOC) in yedoma permafrost cores from up to 20m depth in central Alaska. We observed high DOC concentrations (4 to 129mM) and consistent low molecular weight organic acid concentrations in three cores. We estimate a DOC production rate of 12 mu molDOCm(-2)yr(-1) based on model ages of up to similar to 200kyr derived from uranium isotopes. Acetate C accounted for 241% of DOC in all samples. This proportion suggests long-term anaerobiosis and is likely to influence thaw outcomes due to biolability of acetate upon release in many environments. The combination of uranium isotopes, ammonium concentrations, and calcium concentrations explained 86% of the variation in thaw water DOC concentrations, suggesting that DOC production may be related to both reducing conditions and mineral dissolution over time.
2015-12-28 Web of Science