共检索到 6

The of the Yellow River between its source and Hekou Town in Inner Mongolia is known as the Upper Yellow River Basin. It is the main source area of water resources in the Yellow River Basin, providing reliable water resources for 120 million people. Studying the hydrometeorological changes in the Upper Yellow River Basin is crucial for the development of human society. However, in the past, there has been limited research on hydrometeorological changes in the Upper Yellow River Basin. In order to clarify the four-dimensional spatiotemporal variation characteristics of hydrometeorological elements in the Upper Yellow River Basin, satellite and reanalysis hydrometeorological elements products need to be used. Unfortunately, there is currently a lack of precise evaluation studies on satellite and reanalysis hydrometeorological elements products in the Upper Yellow River Basin, and the geomorphic characteristics of this area have raised doubts about the accuracy of satellite and reanalysis hydrometeorological elements products. Thus, the evaluation study in the Upper Yellow River Basin is an important prerequisite for studying the four-dimensional spatiotemporal changes of hydrometeorological elements. When conducting evaluation study, we found that previous evaluation studies had a very confusing understanding of the spatiotemporal characteristics of datasets. Some papers even treated the spatiotemporal characteristics of evaluation metrics as the spatiotemporal characteristics of datasets. Therefore, we introduced a four-dimensional spacetime of both datasets and evaluation metrics to rectify the chaotic spatiotemporal view in the past. Our research results show that satellite and reanalysis hydrometeorological elements products have different abilities in describing the temporal and spatial distribution and change characteristics of hydrometeorological elements. The difference in the ability of satellite and reanalysis hydrometeorological elements products to describe temporal and spatial distribution and change characteristics requires us to select data at different temporal and spatial scales according to research needs when conducting hydrometeorological research, in order to ensure the credibility of the research results.

期刊论文 2024-05-01 DOI: http://dx.doi.org/10.1007/s00382-024-07488-5 ISSN: 0930-7575

Study region: Upper Yellow River Basin (UYRB), China. Study focus: We provide a comprehensive overview of the changes in the natural social binary water cycle system in the UYRB from the perspectives of the atmosphere, hydrosphere, cryosphere, biosphere, and human society by summarizing previous research results. New hydrological insight for the region: Since the 1980s, the continuous temperature rise led to permafrost thawing, resulting in a decrease in runoff and an increase in groundwater in the UYRB. The ecological protection and high-quality development of human society continuously increase the demand for water resources. Especially the runoff of the river in the human gathering area has significantly decreased and there has been an overexploitation of groundwater, resulting in a serious shortage of water resources. The future water supply and demand situation in the UYRB will be more severe. However, the current understanding of the natural social binary water cycle in the Upper Yellow River Basin is still insufficient, which seriously limits the high-quality development of human society in the UYRB. Among them, some erroneous conclusions can even provide misleading information for policy-making and cause serious manpower and resources loss. Natural social binary water cycle is still in initial stage in the UYRB, that is reflected in a lot of contradictions and shortcomings in past research. We propose four feasible research directions to comprehensively promote hydrometeorological research, providing effective guidance for the formulation of high-quality development policies in the UYRB.

期刊论文 2023-07-12 DOI: http://dx.doi.org/10.1016/j.ejrh.2024.102079

Since the 20th century, due to global warming, permafrost areas have undergone significant changes. The degradation of permafrost has complicated water cycle processes. Taking the upper Yellow River basin (UYRB) as a demonstration, this study discusses the long-term (1960-2019) changes in frozen ground and their hydrological effects with a cryosphere-hydrology model, in particular a permafrost version of the water and energy budget-based distributed hydrological model. The permafrost at the UYRB, with thickening active layer and lengthening thawing duration, has degraded by 10.8%. The seasonally frozen ground has a more pronounced intra-annual regulation that replenishes surface runoff in the warm season, while the degradation of permafrost leads to a runoff increase. The occurrence of extreme events at the UYRB has gradually decreased with the degradation of frozen ground, but spring droughts and autumn floods become more serious. The results may help better understand the hydrological impacts of permafrost degradation in the Tibetan Plateau.

期刊论文 2022-12-01 DOI: 10.1088/1748-9326/aca4eb ISSN: 1748-9326

Despite the importance of the Yellow River to China, climate change for the middle reaches of the Yellow River Basin (YRB) has been investigated far less than for other regions. This work focuses on future changes in mean and extreme climate of the YRB for the near-term (2021-2040), mid-term (2041-2060), and far-term (2081-2100) future, and assesses these with respect to the reference period (1986-2005) using the latest REgional MOdel (REMO) simulations, driven by three global climate models (GCMs) and assuming historical and future [Representative Concentration Pathway (RCP) 2.6 and 8.5] forcing scenarios, over the CORDEX East Asia domain at 0.22 degrees horizontal resolution. The results show that REMO reproduces the historical mean climate state and selected extreme climate indices reasonably well, although some cold and wet biases exist. Increases in mean temperature are strongest for the far-term in winter, with an average increase of 5.6 degrees C under RCP 8.5. As expected, the future temperatures of the warmest day (TXx) and coldest night (TNn) increase and the number of frost days (FD) declines considerably. Changes to mean temperature and FD depend on elevation, which could be explained by the snow-albedo feedback. A substantial increase in precipitation (34%) occurs in winter under RCP 8.5 for the far-term. Interannual variability in precipitation is projected to increase, indicating a future climate with more extreme events compared to that of today. Future daily precipitation intensity and maximum 5-day precipitation would increase and the number of consecutive dry days would decline under RCP 8.5. The results highlight that pronounced warming at high altitudes and more intense rainfall could cause increased future flood risk in the YRB, if a high GHG emission pathway is realized.

期刊论文 2022-04-01 DOI: http://dx.doi.org/10.1007/s00382-020-05617-4 ISSN: 0930-7575

Frozen soil undergoing freeze-thaw cycles has effects on local hydrology, ecosystems, and engineering infrastructure by global warming. It is important to clarify the hydrological processes of frozen soil, especially permafrost. In this study, the performance of a distributed cryosphere-hydrology model (WEB-DHM, Water and Energy Budget-based Distributed Hydrological Model) was significantly improved by the addition of enthalpy-based permafrost physics. First, we formulated the water phase change in the unconfined aquifer and its exchanges of water and heat with the upper soil layers, with enthalpy adopted as a prognostic variable instead of soil temperature in the energy balance equation to avoid instability when calculating water phase changes. Second, more reasonable initial conditions for the bottom soil layer (overlying the unconfined aquifer) were considered. The improved model (hereinafter WEB-DHM-pf) was carefully evaluated at three sites with seasonally frozen ground and one permafrost site over the Qinghai-Tibetan Plateau (the Third Pole), to demonstrate the capability of predicting the internal processes of frozen soil at the point scale, particularly the zero-curtain phenomenon in permafrost. Four different experiments were conducted to assess the impacts of augmentation of single model improvement on simulating soil water/ice and temperature dynamics in frozen soil. Finally, the WEB-DHM-pf was demonstrated to be capable of accurately reproducing the zero curtain, detecting long-term changes in frozen soil at the point scale, and discriminating basin-wide permafrost from seasonally frozen ground in a basin at the headwaters of the Yellow River.

期刊论文 2020-09-27 DOI: 10.1029/2020JD032916 ISSN: 2169-897X

Frozen ground degradation resulting from climate warming on the Tibetan Plateau has aroused wide concern in recent years. In this study, the maximum thickness of seasonally frozen ground (MTSFG) is estimated by the Stefan equation, which is validated using long-term frozen depth observations. The permafrost distribution is estimated by the temperature at the top of permafrost (TTOP) model, which is validated using borehole observations. The two models are applied to the upper Yellow River Basin (UYRB) for analyzing the spatio-temporal changes in frozen ground. The simulated results show that the areal mean MTSFG in the UYRB decreased by 3.47 cm/10 a during 1965-2014, and that approximately 23% of the permafrost in the UYRB degraded to seasonally frozen ground during the past 50 years. Using the climate data simulated by 5 General Circulation Models (GCMs) under the Representative Concentration Pathway (RCP) 4.5, the areal mean MTSFG is projected to decrease by 1.69 to 3.07 cm/10 a during 2015-2050, and approximately 40% of the permafrost in 1991-2010 is projected to degrade into seasonally frozen ground in 2031-2050. This study provides a framework to estimate the long-term changes in frozen ground based on a combination of multi-source observations at the basin scale, and this framework can be applied to other areas of the Tibetan Plateau. The estimates of frozen ground changes could provide a scientific basis for water resource management and ecological protection under the projected future climate changes in headwater regions on the Tibetan Plateau.

期刊论文 2018-03-01 DOI: 10.1016/j.gloplacha.2018.01.009 ISSN: 0921-8181
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-6条  共6条,1页