Background Stable carbon isotope composition (delta C-13(p)) can be used to estimate the changes in intrinsic water use efficiency (iWUE) in plants, which helps us to better understand plants' response strategies to climate change. This study focused on the variations in delta C-13(p) and iWUE for the different life-form plants (i.e., herbs, shrubs, and trees) along an altitudinal gradient (3300, 3600, 3900, 4100, 4300, and 4500 m) on the eastern slope of Yulong Snow Mountain, southeastern margin of the Qinghai-Tibet Plateau. The response mechanisms of delta C-13(p) and iWUE for different life-form plants to altitude were thoroughly analyzed in this mountain ecosystem. Results The delta C-13(p) values of plants on the eastern slopes of Yulong Snow Mountain ranged from - 30.4 parts per thousand to - 26.55 parts per thousand, with a mean of - 28.02 parts per thousand, indicating a dominance of C-3 plants. The delta C-13(p) and iWUE values varied among different life-form plants in the order of herbs > shrubs > trees, particularly in 3600, 3900, and 4300 m. The delta C-13(p) and iWUE values for herbs and shrubs increased with altitude and were mainly controlled by air temperature. The two parameters for trees exhibited a trend of initial decrease followed by an increase with altitude. Below 3900 m, the delta C-13(p) and iWUE values decreased with altitude, influenced by soil moisture. However, above 3900 m, the two parameters increased with altitude, mainly regulated by air temperature. In addition, iWUE was positively correlated with leaf P content but negatively correlated with leaf N:P ratio, especially for herbs and trees, suggesting that P plays a key role in modulating iWUE in this region. Conclusions The differentiated responses of water availability for different life-form plants to a higher altitudinal gradient are regulated by air temperature, soil moisture, and leaf P content in the Yulong Snow Mountain. These results provide valuable insights into understanding the water-carbon relationships in high-altitude ecosystems.
Trace elements (TEs) in water are crucial parameters for assessing water quality. However, detailed studies are limited on TEs in the hydrological system of the Tibetan plateau (TP). Here, we sampled snow, river water, and groundwater in Yulong Snow Mountain (Mt. Yulong) region, southeast TP, in 2016 and analyzed the concentrations of nine TEs (namely Al, Mn, Fe, Cr, Ni, Cu, Zn, As, and Pb). In snow, the average concentrations of Fe, Zn, and Al were >10 mu g/L, whereas other elements, including Cr, Ni, Cu, As, Hg, and Pb, exhibited average concentrations <1 mu g/L. The concentrations of Al, Mn, Fe, Zn, and As were higher in rivers than in snow. According to enrichment factors (EFs), Zn concentration in snow was highly influenced by anthropogenic activities, whereas Mn, Fe, Cr, and As were uninfluenced. River and lake/reservoir water near human settlements were affected by anthropogenic activities. However, groundwater around Mt. Yulong is not contaminated yet. The increasing EFs in Mt. Yulong snowpit are consistent with those of southern TP snowpits, suggesting that the area has been affected by anthropogenic activities both from local emissions and long-distance transport of pollutants from South Asia. A conceptual model was proposed to show TEs in the water cycle. Although water quality is good overall in Mt. Yulong region, threats to the water environment still exit due to increasing anthropogenic activities and climate warming. The accelerated ablation of cryosphere due to climate warming could be a source of TEs in rivers and groundwater, which should be paid attention to in the future. (C) 2020 Elsevier B.V. All rights reserved.
The Yulong Snow Mountain (YSM) is a region of temperate glaciers in the southeast Qinghai-Tibetan Plateau. The present study systematically assessed the glacier changes during the past several decades using ground-based and remotely sensed observations and referencing topographic maps. The images and maps revealed that the glaciers area in the YSM retreated by 64.02% from 1957 to 2017. The length of Baishui River Glacier No. 1 decreased by 12.5 m/year during this period, whereas the front elevation of this glacier increased by 10.83 m/year. The mean annual mass balance of this glacier was at - 0.42 metre water equivalent from 1957 to 2017, and its accumulative mass balance was - 27.45 metre water equivalent. The glacier retreats of glacier area, glacier front, and mass balance in the YSM primarily resulted from the increasing air temperature. These glacier retreats not only will have a negative impact on glacier tourism in the future, e.g., the retreat or disappearance of glaciers will reduce the attractiveness of mountainous scenic spots, but also will create new opportunities for the development of local tourism, e.g., last chance will simulate tourists' curiosity. Hence, the findings of our present study help to understand the mechanism between accelerated ablation of temperate glaciers and climate change in southeast regions of Qinghai-Tibetan Plateau and provide references for local tourism administrations.
Comprehensive knowledge of bacterial ecology mainly in supraglacial habitats is pivotal particularly at the frontier of accelerated glacier retreat. In this study, bacterial diversity and community composition in glacial soil and meltwater runoff at the frontier of Baishui Glacier No.1 were evaluated using high throughput sequencing. Significant variations in the physiochemical parameters formed an ecological gradient between soil and meltwater runoff. Based on the richness and evenness indexes, the bacterial diversity was relatively higher in soil compared with meltwater runoff. Hierarchical clustering and bi-plot ordination revealed that the taxonomic composition of soil samples was highly similar and significantly influenced by the ecological parameters than the meltwater runoff. The overall relative abundance trend of bacterial phyla and genera were greatly varied in soil and water samples. The relative abundance of Proteobacteria was higher in water runoff samples (40.5-87%) compared with soil samples (32-52.7%). Proteobacteria, Firmicutes, and a little part of Cyanobacteria occupied a major portion of water runoff while the soil was dominated by Acidobacteria (6-16.2%), Actinobacteria (5-16%), Bacteroidetes (0.5-8.8%), and Cyanobacteria (0.1-8.3%) besides Proteobacteria and Firmicutes. Higher numbers of biomarkers were found in soil group compared with the water group. The study area is diverse in terms of richness, while community structures are not evenly distributed. This study provides a preliminary understanding of the bacterial diversity and shifts in community structure in soil and meltwater runoff at the frontier of the glacial. The findings revealed that the environmental factors are a significantly strong determinant of bacterial community structures in such a closely linked ecosystem.
In this study, snow samples collected from nine snowpacks from Mt. Yulong are measured to examine the monthly and annual isotopic variation. The results indicate that the late autumn and winter snow sampled in 2008/2009 show a similar high-low-high delta O-18 variation. In spring, the high-low-high curve still exists in the lower layers (1.5 m). Isotopic homogenization, smoothing the vertical variation of delta O-18 in snow, is observed in June and July when snow melting occurs. Samples collected in April of 2009, 2012 and 2017 show significant differences, suggesting annual changes of isotope contents in snow. This study suggests that the isotope contents in the snow profile can reflect meteorological information. At the monthly scale, we can distinguish the information on snow accumulation and melting by determining the monthly variation of vertical isotope contents in snow. At the annual scale, we can analyze the annual difference of corresponding meteorological factors. Collectively, observing the stable isotopes in snow could provide evidence for climate change, particularly when climatic data are lacking or are challenging to obtain in cold glacierized regions.
Using ground-penetrating radar (GPR), we measured and estimated the ice thickness of the Baishui River Glacier No. 1 of Yulong Snow Mountain. According to the position of the reflected media from the GPR image, combined with the radar waveform amplitude and polarity change information, the ice thickness and the changing medium position at the bottom of this temperate glacier were identified. Water paths were found in the measured ice, including ice caves and crevasses. A debris-rich ice layer was found at the bottom of the glacier, which produces strong abrasion and ploughing action at the bedrock surface. This results in the formation of different detrital layers stagnated at the ice-bedrock interface and numerous crevasses on the bedrock surface. Based on the obtained ice thickness and differential GPS data, combined with Landsat images, the kriging interpolation method was used to obtain grid data. The average ice thickness was 52.48 m and between 4740 and 4890 m above sea level, with a maximum depth of 92.83 m. The bedrock topography map of this area was drawn using digital elevation model from the Shuttle Radar Topography Mission. The central part of the glacier was characterized by small ice basins with distributed ice steps and ice ridges at the upper and lower parts.
Water-soluble organic carbon (WSOC) widely stored in glaciers from local and distant sources, and then released it to downstream environments under a warming climate. Climatic driven changes to glacial run-off are larger and represent an important flux of organic carbon. However, very few WSOC data are currently available to fully characterize WSOC variation in the temperate glacierized regions of the Tibetan Plateau (TP). This study first systematically evaluated the concentration characteristics and light absorbing property of WSOC, and insoluble particulate carbon (IPC) in snow and ice of a typical temperate glacier on Mt. Yulong. Average concentrations of WSOC were 0.610.21mg L-1 in Baishui glacier on Mt. Yulong. WSOC concentrations in surface aged snow were dramatically decreased with the time extension during the entire monsoon season due to extensive glacial melting and scavenging effects by meltwater.The MAC values of WSOC calculated at 365nm was 6.31 +/- 0.34 m(2) g(-1) on Mt. Yulong, and there exists distinct spectral dependence of MAC(wsoc) within the wavelength range (260-700nm). The low AAE(330-400) values suggest the light absorption of WSOC is more spectrally neutral. The flux of WSOC in Baishui glacier was 0.99 gC m(-2)yr(-1), while the IPC flux was 4.77 gC m(-2)yr(-1). Total WSOC storage in the Baishui glacier was estimated to be 1.5 tone C and total IPC storage was 7.25 tone C (1 tone =10(6)g). Moreover, glacial melting was reinforced by the soluble and insoluble light absorbing impurities (ILAIs) in glaciers, Baishui glacier can be considered as a fraction of carbon source under the scenario of a warming climate, more importantly, WSOC in snow and ice needs to be taken into account in calculating the radiative forcing of ILAIs and accelerating glacial melting.
Insoluble light-absorbing impurities (ILAIs) in surface snow of glacier reduce snow albedo and accelerate glacier melt. In order to assess effects of ILAIs on glacier melt, we present the first results from field measurements of ILAIs, including black carbon (BC) and dust in snowpacks of glacier on Mt. Yulong, southeastern Tibetan Plateau (TP). Amplification factors because of snow melt were calculated for BC and dust concentrations in surface snow, and melt scavenging rates, effects of ILAIs on snow spectral albedo, and associated radiative forcing (RF) were estimated. Melt amplification generally appeared to be confined to the top few centimeters of the snowpack, and our results indicated that BC was more efficiently scavenged with meltwater than the other insoluble light absorbers (e.g., dust). Absorbing impurities reduced snow spectral albedo more with larger particulate grain radius (r(e)). Spectral albedo reduction was investigated using the SNow ICe Aerosol Radiative (SNICAR) model. Albedo reduction for 1200 ng g(-1) of BC in Mt. Yulong snow was 0.075 for snow with r(e) = 500 compared with r(e) = 200 mu m. If dust (51.37 ppm) was the only impurity in the snowpack, the spectral albedo reduction would be only 0.03, and the associated RF was 42.76 W m(-2). For a BC and dust mixed scenario, the spectral albedo was substantially reduced (0.11 +/- 0.03), and the associated RF (145.23 W m(-2)) was more than three times larger than that for the dust-only scenario. BC in snow is an active factor controlling snow albedo and snow-ice RF. Further observational studies are needed to quantify the contribution of BC and dust to albedo reduction and glacier melt and to characterize the variation of glacier RF.
The Tibetan Plateau (TP) or the third polar cryosphere borders geographical hotspots for discharges of black carbon (BC). BC and dust play important roles in climate system and Earth's energy budget, particularly after they are deposited on snow and glacial surfaces. BC and dust are two kinds of main light-absorbing impurities (LAIs) in snow and glaciers. Estimating concentrations and distribution of LAIs in snow and glacier ice in the TP is of great interest because this region is a global hotspot in geophysical research. Various snow samples, including surface aged-snow, superimposed ice and snow meltwater samples were collected from a typical temperate glacier on Mt. Yulong in the snow melt season in 2015. The samples were determined for BC, Organic Carbon (OC) concentrations using an improved thermal/optical reflectance (DRI Model 2001) method and gravimetric method for dust concentrations. Results indicated that the LAIs concentrations were highly elevation-dependent in the study area. Higher contents and probably greater deposition at relative lower elevations (generally <5000 m asl) of the glacier was observed. Temporal difference of LAIs contents demonstrated that LAIs in snow of glacier gradually increased as snow melting progressed. Evaluations of the relative absorption of BC and dust displayed that the impact of dust on snow albedo and radiatiVe forcing (RF) is substantially larger than BC, particularly when dust contents are higher. This was verified by the absorption factor, which was <1.0. In addition, we found the BC-induced albedo reduction to be in the range of 2% to nearly 10% during the snow melting season, and the mean snow albedo reduction was 4.63%, hence for BC contents ranging from 281 to 894 ng g(-1), in snow of a typical temperate glacier on Mt. Yulong, the associated instantaneous RF will be 76.38-146.96 W m(-2). Further research is needed to partition LAIs induced glacial melt, modeling researches in combination with long-term in-situ observations of LAIs in glaciers is also urgent needed in the future work. (C) 2017 Elsevier B.V. All rights reserved.