Nanoplastics (NPs) and zinc (Zn), both widespread in soil environments, present considerable risks to soil biota. While NPs persist environmentally and act as vectors for heavy metals like Zn, their combined toxicity, especially in soil invertebrates, remains poorly understood. This study evaluates the individual and combined effects of Zn and NPs on earthworm coelomocytes and explores their interactions with Cu/Zn-superoxide dismutase (SOD), an antioxidant enzyme. Molecular docking revealed that NPs bind near the active site of SOD through pi-cation interactions with lysine residues, further stabilized by neighboring hydrophobic amino acids. Viability assays indicated that NPs alone (20 mg/L) had negligible impact (94.54 %, p > 0.05), Zn alone (300 mg/L) reduced viability to 80.02 %, while co-exposure reduced it further to 73.16 %. Elevated levels of reactive oxygen species (ROS) and malondialdehyde (MDA) levels were elevated to 186 % and 173 % under co-exposure, alongside greater antioxidant enzyme disruption, point to synergistic toxicity. Dynamic light scattering and zeta potential (From -13 to -7 mV) analyses revealed larger particle sizes in the combined system, indicative of enhanced protein interactions. Conformational changes in SOD, such as alpha-helix loss and altered fluorescence, further support structural disruption. These findings demonstrate that co-exposure to NPs and Zn intensifies cellular and protein-level toxicity via integrated physical and biochemical mechanisms, providing critical insight into the ecological risks posed by such co-contaminants in soil environments.
Zn2+ play an important role in maintaining the normal functioning of living organisms, and excessive or insufficient levels can cause serious health problems. Zn2+ play a vital role in maintaining normal biological functions, and abnormal levels Zn2+ may lead to a range of severe health issues. Therefore, real-time and accurate detection of Zn2+ is critically important. Given the widespread presence of Zn2+ in living organisms and external environments, developing probes suitable for multi-scenario Zn2+ detection is of significant practical value. In this study, a novel probe SSD was synthesized using salicylaldehyde as the precursor, enabling ultra-sensitive Zn2+ detection with a detection limit as low as 9.1 nM. The probe SSD was successfully applied to the detection of Zn2+ in water, soil, and food samples. In addition, an SSD-based Zn2+ smartphone detection platform was developed, which can quickly detect the content of Zn2+ in actual samples. Moreover, due to its excellent optical properties and low toxicity, SSD was able to detect both intracellular and extracellular Zn2+. Most importantly, probe SSD demonstrated the capability to monitor real-time changes in Zn2+ concentrations during cellular oxidative damage, providing valuable insights for research on related physiological diseases.
Zinc (Zn) is a vital micronutrient required for optimal plant growth and soil fertility. Its use in the form of nanoparticles (NPs) has gained significant attention in agricultural applications. Green synthesized Zn-based NPs offer an eco-friendly solution to several conventional problems in agriculture. Several plants, bacteria, fungi and yeast have shown significant potential in fabricating Zn NPs that can provide environmentally friendly solutions in agriculture and the approach is aligned with sustainable agricultural practices, reducing the dependency on harmful agrochemicals. Zn-based NPs act as plant growth promoters, enhance crop yield, promote resilience to abiotic stressors and are efficient crop protection agents. Their role as a smart delivery system, enabling targeted and controlled release of agrochemicals, further signifies their potential use in agriculture. Because agriculture requires repeated applications hence, the toxicological aspects of Zn NPs cannot be ignored. Zn NPs are reported to cause phytotoxicity, including root damage, physiological and biochemical disturbances, and genotoxic effects. Furthermore, exposure to Zn NPs poses risks to soil microbiota, and aquatic and terrestrial organisms potentially impacting the ecosystem. The green synthesis of Zn-based NPs has a promising aspect for advancing sustainable agriculture by reducing agrochemical use and improving crop productivity. Their diverse applications as plant growth promoters, crop protectants and smart delivery systems emphasize their potential. However, the toxicological aspects are essential to ensure the standardization of doses for their safe and effective use. Further research would help address such concerns and help in developing viable and eco-friendly solutions for modern agriculture. (c) 2025 Society of Chemical Industry.
This study sought to develop a biodegradable material that can be a substitute for conventional plastics and is sustainable and eco-friendly. The research's primary focus was the conversion of carboxymethyl cellulose (CMC) derived from agricultural waste into a bioplastic film that is satisfactory for use in packaging. The weak mechanical stability and excessive water sensitivity of CMC films limit their widespread use. To overcome these limitations, therefore, CMC films were reinforced with varying concentrations (0, 5, 10, 15, 20, and 25%) of zinc oxide nanoparticles (ZnO NPs), using a solution casting method. The films were also surface-modified by spray coating with a 1:1 composite mixture of poly(dimethylsiloxane) (PDMS) and starch. An array of analyses were used to investigate the films' properties. Structural characterization employing Fourier transform infrared spectroscopy (FTIR) and scanning electron microscopy (SEM) confirmed the successful incorporation of ZnO and uniformity of PDMS/starch coating on the films. Thermogravimetric analysis (TGA) and mechanical testing revealed that the films' thermal and mechanical properties were improved by the incorporation of ZnO, with the film CZ20-C exhibiting the highest value of tensile strength--14.029 MPa--and 27.59% elongation at break. The films exhibited excellent water resistance, as evidenced by a remarkable increase in their water contact angle to 152.04 degrees. Furthermore, biodegradability studies demonstrated that the films degraded by 84.78% in soil within 20 days, under ambient conditions. Films with these desirable characteristics are therefore producible through the study's facile strategy for preparing CMC-based eco-friendly composite films that have excellent potential to replace conventional plastic in the packaging industry.
Nanoparticles can easily reach soil,water and foodstuffs. The zinc oxide nanoparticle (ZnONP), which is a type of nanoparticle with known antiviral/microbial properties used frequently in cosmetic UV protection products, can damage the cell membrane/wall complex in Saccharomyces cerevisiae after exposure. However, the capacity of hsp150, an o-mannosylated heat shock protein needed for the strength of the S. cerevisiae cell wall, to prevent ZnONP toxicity/genotoxicity has not been investigated before. In this study, HSP150 gene of S. cerevisiae cells was deleted and the effects on the toxicity caused by ZnONPs were investigated by MTT, cell wall/membrane damage analyses and zymolyase susceptibility test. In addition, the level of oxidative DNA damage was determined by 8-OHdG test in the HSP150 deficient cells (hsp150 Delta). IC50 values observed in hsp150 Delta cells were lower than the wild type cells. In addition, the lowest dose of ZnONPs (250 mu g/mL) was significant enough to damage the cellular integrity in hsp150 Delta cells and DNA damage levels observed in the hsp150 Delta cells exposed to the lowest dose of the nanoparticles were nearly 2.5 times higher than the wild type cells. Therefore, it can be concluded that the HSP150 gene is needed for the cellular protection against ZnONP toxicity and genotoxicity.
Herein, CuO and ZnO nanoparticles (NPs) were biogenically synthesized using plant (Artemisia vulgaris) extracts. The biogenic NPs were subsequently evaluated in vitro for antifungal activity (200 mg/L) against Fusarium virguliforme (FV; the cause of soybean sudden death), and for crop protection (200-500 mg/L) in FV-infested soybean. ZnONPs exhibited 3.8-, 2.5-, and 4.9-fold greater in vitro antifungal activity, compared to Zn or Cu acetate salt, the Artemisia extract, and a commercial fungicide (Medalion Fludioxon), respectively. The corresponding CuONP values were 1.2-, 1.0-, and 2.2-fold, respectively. Scanning electron microscopy (SEM) revealed significant morpho-anatomical damage to fungal mycelia and conidia. NP-treated FV lost their hyphal turgidity and uniformity and appeared structurally compromised. ZnONP caused shriveled and broken mycelia lacking conidia, while CuONP caused collapsed mycelia with shriveled and disfigured conidia. In soybean, 200 mg/L of both NPs enhanced growth by 13%, compared to diseased controls, in both soil and foliar exposures. Leaf SEM showed fungal colonization of different infection sites, including the glandular trichome, palisade parenchyma, and vasculature. Foliar application of ZnONP resulted in the deposition of particulate ZnO on the leaf surface and stomatal interiors, likely leading to particle and ion entry via several pathways, including ion diffusion across the cuticle/stomata. SEM also suggested that ZnO/CuO NPs trigger structural reinforcement and anatomical defense responses in both leaves and roots against fungal infection. Collectively, these findings provide important insights into novel and effective mechanisms of crop protection against fungal pathogens by plant-engineered metal oxide nanoparticles, thereby contributing to the sustainability of nano-enabled agriculture.
This research explores the synthesis of carboxymethyl cellulose (CMC) for the development of a cost-effective bioplastic film that can serve as a sustainable alternative to synthetic plastic. Replacing plastic packaging with CMC-based films offers a solution for mitigating environmental pollution, although the inherent hydrophilicity and low mechanical strength of CMC present significant challenges. To address these limitations, zinc oxide nanoparticles (ZnO NPs) were employed as a biocompatible and non-toxic reinforcement filler to improve CMC's properties. A solution casting method which incorporated varying concentrations of ZnO NPs (0%, 5%, 10%, 15%, 20%, and 25%) into the CMC matrix allowed for the preparation of composite bioplastic films, the physicochemical properties of which were analyzed using scanning electron microscopy, Fourier transform infrared spectroscopy, and X-ray diffraction. The results revealed that the ZnO NPs were well-integrated into the CMC matrix, thereby improving the film's crystallinity, with a significant shift from amorphousness to the crystalline phase. The uniform dispersion of ZnO NPs and the development of hydrogen bonding between ZnO and the CMC matrix resulted in enhanced mechanical properties, with the film CZ20 exhibiting the greatest tensile strength-15.12 +/- 1.28 MPa. This film (CZ20) was primarily discussed and compared with the control film in additional comparison graphs. Thermal stability, assessed via thermogravimetric analysis, improved with an increasing percentage of ZnO Nps, while a substantial decrease in water vapor permeability and oil permeability coefficients was observed. In addition, such water-related properties as water contact angle, moisture content, and moisture absorption were also markedly improved. Furthermore, biodegradability studies demonstrated that the films decomposed by 71.43% to 100% within 7 days under ambient conditions when buried in soil. Thus, CMC-based eco-friendly composite films have the clear potential to become viable replacements for conventional plastics in the packaging industry.
Introduction The heavy metal elements cadmium (Cd) and zinc (Zn) often coexist in nature, making the environmental media more prone to compound pollution. However, research on the toxic effect of the Cd-Zn combination is still lacking, and the underlying toxic mechanisms remain unclear.Methods Therefore, in this experiment, we established four treatment groups with different ratios of Cd-Zn compound stress for the broad bean, Vicia faba L., and aphids, Megoura crassicauda, to explore the growth and physiological adaptation mechanisms under different levels of mixed heavy metal stress.Results By measuring the germination rate, seedling height, and chlorophyll content of broad beans, we found that Cd-Zn-mixed stress has a synergistic inhibitory effect on the growth and development of broad beans. Cd and Zn can be transferred through the food chain, while broad beans can resist complex stress by regulating the content of total soluble sugars and photosynthetic pigments in the body, as well as accumulating proline. In addition, in the first generation of adult aphids, treatment with Cd (12.5 mg/kg) + Zn (100 mg/kg) significantly affected the expression of trehalase (TRE) and trehalose-6-phosphate synthase (TPS) genes and influenced the carbohydrate content and trehalase activity in the aphids.Discussion The number of offspring produced by the second-generation aphids was significantly reduced under mixed heavy metal treatment, but it was not caused by changes in the vitellogenin (Vg) content. These related results provide new avenues for further exploration of plant responses to mixed heavy metal stress, pest control, and management of heavy metal pollution.
Nanomaterials play a crucial role in various applications, but their environmental impact necessitates effective recycling strategies. This study investigates the effects of different ZnO nanoparticles (ZnO-NPs) sizes (0, 30, 50, and 90 nm) on Agrostis stolonifera, focusing on physiological and biochemical responses, root exudate, and microbial community structure. The results showed that the most optimal physiological and biochemical responses, including enhanced plant growth and increased activities of superoxide dismutase, peroxidase, and catalase, were observed at 50 nm ZnO-NPs. Agrostis stolonifera accumulated more ZnO-NPs at 30 nm, with Zn content in root and leaf tissues reaching 186 mg/kg and 294 mg/kg, respectively. Meanwhile, SEM-Mapping and TEM analyses confirmed the absorption and transport of ZnO-NPs within Agrostis stolonifera. Furthermore, root exudates analysis revealed an increase in the types of organic matter secreted by roots at 30 nm and 50 nm ZnO-NPs, while 90 nm ZnO-NPs had the opposite effect. 16S rRNA gene sequencing showed that the species diversity and uniformity of root microorganisms exhibited contrasting trends with increasing ZnO-NPs size, with roots exposed to 50 nm ZnO-NPs showed higher species richness than those exposed to 30 nm or 90 nm. However, beneficial microorganisms such as Bryobacter and Methylophilus were inhibited by 90 nm ZnO-NPs. This study provides novel insights into a potential ZnO-NPs recycling strategy in soil using Agrostis stolonifera, offering a means to mitigate nanoparticle-induced damage to soil and crops.
Pythium irregulare (P. irregulare) is one of the soil-borne pathogens that is the primary cause of damage to several plants each year. The novelty and originality of this work were the ability of Streptomyces gancidicus (S. gancidicus OR229936) to synthesize bimetallic zinc oxide-boron oxide nanoparticles (ZnO-B2O3 NPs) for reducing P. irregulare growth and safeguarding pea plant from damping off disease. The produced bimetallic ZnO-B2O3 NPs' XRD results highlighted the ZnO diffraction peaks at 2 = 27.50 degrees, 31.15 degrees, 45.15 degrees, 56.89 degrees, 67.98 degrees, and 75.25 degrees, which are complemented by the standard card JCPDS number 361451 and correspond to (002), (101), (102), (110), (103), and (201) Bragg's reflections. Along with the standard card JCPDS number 300019, they additionally include the B2O3 NP diffraction peaks at 2 = 15.25 degrees, 28.69 degrees, 31.99 degrees, and 41.28 degrees. Bimetallic ZnO-B2O3 NPs were tested against P. irregular for their antifungal activities. The findings indicated that ZnO-B2O3 NPs exhibited potential anti P. irregulare activity, with an inhibition zone of 33 mm at a concentration of 1000 mu g/mL and a promising MIC of 0.01 mu g/mL. Bimetallic ZnO-B2O3 NPs (0.01 ppm) application appeared to significantly lessen the severity of the pea post-emergence damaging off disease by 10% and to provide significant protection by 88%. In comparison to fungicide (difenoconazole 25%) treatments, all metabolic resistance indicators significantly enhanced after the usage of bimetallic ZnO-B2O3 NPs, ZnO NPs, and B2O3 NPs with ethyl acetate extract of S. gancidicus. The beneficial impacts of the bimetallic ZnO-B2O3 NPs, ZnO NPs, and B2O3 NPs have been broadened to increase the enzyme activities of peroxidase (POD) and polyphenol oxidase (PPO) in both healthy and infected pea plant in comparison to control. Reduction of Malondialdehyde content (MDA) in response to S. gancidius filtrate, bimetallic ZnO-B2O3 NPs, ZnO NPs, B2O3 NPs, and difenoconazole by 41.68%, 36.51%, 26.15, 26.15, and 15.25%, respectively. Also, contents of H2O2 in infected pea plant were diminished by 50%, 45%, 40%, 37.5%, and 22.5% at bimetallic ZnO-B2O3 NPs, S. gancidicus filtrate, ZnO NPs, difenoconazole, and B2O3 NPs comparing to P. irregular-infected pea plant is strong evidence to induce disease recovery. The application of bimetallic ZnO-B2O3 NPs seems to be a significant approach to relieve the toxic influences of P. irregulare on infected pea plant as green and alternative therapeutic nutrients of chemical fungicides.