共检索到 2

Zn2+ play an important role in maintaining the normal functioning of living organisms, and excessive or insufficient levels can cause serious health problems. Zn2+ play a vital role in maintaining normal biological functions, and abnormal levels Zn2+ may lead to a range of severe health issues. Therefore, real-time and accurate detection of Zn2+ is critically important. Given the widespread presence of Zn2+ in living organisms and external environments, developing probes suitable for multi-scenario Zn2+ detection is of significant practical value. In this study, a novel probe SSD was synthesized using salicylaldehyde as the precursor, enabling ultra-sensitive Zn2+ detection with a detection limit as low as 9.1 nM. The probe SSD was successfully applied to the detection of Zn2+ in water, soil, and food samples. In addition, an SSD-based Zn2+ smartphone detection platform was developed, which can quickly detect the content of Zn2+ in actual samples. Moreover, due to its excellent optical properties and low toxicity, SSD was able to detect both intracellular and extracellular Zn2+. Most importantly, probe SSD demonstrated the capability to monitor real-time changes in Zn2+ concentrations during cellular oxidative damage, providing valuable insights for research on related physiological diseases.

期刊论文 2025-09-05 DOI: 10.1016/j.molstruc.2025.142461 ISSN: 0022-2860

Conventional curing agents are associated with environmental impacts when treating Zn(2+)contaminated soils. To overcome this limitation. In this study, we study a new type of MgO-CSB curing agent. Namely, corn stover biochar is modified with activated MgO. Modification of corn stover biochar using activated MgO, and carbonation curing was adopted to solidify/stabilize the Zn(2+)contaminated soil. The curing efficacy of Zn(2+)contaminated soil under modified mass ratio, Zn2+ concentration, carbonation time, and curing agent incorporation was investigated. The findings indicate that the optimal adsorption efficiency was attained following the co-pyrolytic modification of activated MgO with corn stover biochar at 700 degrees C. The optimal modified mass ratios for curing were found to be 1:1, 1:2, and 2:1 at Zn2+ concentrations of 0.1 %, 0.5 %, and 1 %, respectively. At a lower Zn2+ concentration, peak carbonization intensity is achieved at 0.5 hours, while at a 1 % Zn2+ concentration, peak intensity is reached at 1 hour. The deformation modulus of the cured soil increases as the curing agent dosage increases and the soil aggregates become denser. SEM results show that: The carbonization and curing reaction products are mainly nesquehonite and Mg (OH)(2). The internal structural damage of the cured soil was aggravated by the increase in Zn(2+)concentration, and the generation of nesquehonite and Mg (OH)(2) was inhibited; The carbonation time was extended to 1 h and the soil structure stability was enhanced.

期刊论文 2024-10-25 DOI: 10.1016/j.conbuildmat.2024.138341 ISSN: 0950-0618
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-2条  共2条,1页