共检索到 82

Cadmium (Cd) accumulation in Solanum nigrum L. is known to occur mainly in cell walls and vesicles. However, limited research has been conducted on the toxic effects of Cd specifically targeting mitochondria in S. nigrum leaves. This study aims to delineate the impact of Cd accumulation on mitochondrial structure and function in S. nigrum leaves, thereby providing a theoretical foundation for enhancing its application in phytoremediation of Cd-polluted soils. The results showed that the Cd content in mitochondria would gradually reach saturation with the increase of Cd treatment concentration. However, the accumulation of Cd led to osmotic pressure imbalance and morphological changes within mitochondria, which in turn caused a series of impairments in mitochondrial function. Cd severely damaged the energy metabolism function of mitochondria, especially under 200 mu M CdCl2 stress, the mitochondrial ATP content decreased by 90.65 % and the activity of H+-ATPase decreased by 80.65 %. Furthermore, reactive oxygen species (ROS) in mitochondria accumulated mainly in the form of H2O2. Compared with the non-Cd control group, the H2O2 content in the Cd-treated groups (50, 100, and 200 mu M CdCl2) increased by 61.62 %, 186.69 %, and 405.81 %, respectively. The inhibition of cellular respiration by Cd and the sharp increase in ROS exacerbated the oxidative damage in mitochondria. Interestingly, the activities of mitochondrial peroxidase (POD) and dehydroascorbate reductase (DHAR) exhibit remarkable tolerance under Cd stress. Based on these results, we believe that Cd can cause dysfunction and oxidative damage to the mitochondria of S. nigrum leaves.

期刊论文 2025-08-01 DOI: 10.1016/j.plaphy.2025.110016 ISSN: 0981-9428

Drought and soil nitrogen (N) deficiency are the limiting factors for poplar plantation productivity improvement in semi-arid regions. N addition could alleviate the growth decline of trees caused by drought; however, the effectiveness under severe drought and the underlying ecophysiological understanding remains uncertain. To further clarify the mechanisms of N addition in regulating tree biomass accumulation under different drought levels, we investigated the effects of 6 g NH4NO3 per plant addition on the carbon and N assimilation and biomass accumulation of potted poplar seedlings under moderate or severe drought (40 % or 20 % of field capacity) conditions, with a particular emphasis on carbon and N interactions. We found that under moderate drought, N addition markedly promoted the activities of antioxidases, nitrate reductase (39 %), and N concentration (56 %) in leaves, significantly alleviated the damages of the membranes and photosystem II, and increased both leaf area (69 %) and chlorophyll content per unit leaf area, along with net photosynthesis rate (34 %), thereby significantly alleviating growth restrictions. However, under severe drought, although N addition increased the accumulation of both soluble sugars and N of the whole plant, it did not ameliorate the damage to membranes and photosystem II, nor did it improve chlorophyll content, leaf area, or biomass accumulation. Therefore, N addition could increase leaf area, enhance antioxidants, and positively influence leaf carbon assimilation (0.60, p < 0.001) in poplar seedlings under moderate drought. The restrictions on leaf area and carbon assimilation were exacerbated during severe drought, which mitigated the positive effects of N addition on carbon assimilation and biomass accumulation. The findings of this study suggest that the growth of hybrid poplar can be enhanced by applying N fertilizer under mild drought conditions. In contrast, N fertilization has no significant effect in severe drought conditions.

期刊论文 2025-07-01 DOI: 10.1016/j.indcrop.2025.121040 ISSN: 0926-6690

A modification of the high-cycle accumulation (HCA) framework coupled with a practical constitutive model for sands and its numerical implementation as a user-defined soil model in PLAXIS is presented. The implemented model is compared against data from the original high-cyclic tests in Karlsruhe fine sand and more recent laboratory tests in Dunkirk sand. A reference 15 MW offshore wind turbine monopile foundation subject to lateral cyclic wave loading is used in an engineering design scenario at three different load levels to verify the current numerical implementation. Details include: center dot Modifications made to the HCA framework to couple it with a practical sand constitutive model, center dot Implementation of an efficient workflow to switch between low and high cycle constitutive equations in PLAXIS, and center dot Verification of the implementation at single element and boundary value problem scales.

期刊论文 2025-06-01 DOI: 10.1016/j.mex.2025.103183

The pervasive occurrence of combined metal and antibiotic pollution (CMAP) in agricultural soils is increasingly being recognized as a novel threat to ecosystems. However, the toxicity variations of CMAP compared to single pollution and the mechanisms underlying these changes remain poorly understood. Herein in this study, the toxicities of copper (Cu)/erythromycin (ERY) and lead (Pb)/norfloxacin (NOR) to earthworms (Eisenia fetida) were investigated. These results indicated that a single exposure to ERY and NOR at environmental concentrations had negligible effects on physiological processes. Combined Cu/ERY exposure induced more significant oxidative stress, disrupted energy metabolism, and caused cellular damage than Cu alone, as indicated by altered antioxidant enzyme activities, malondialdehyde and adenosine triphosphate content, elevated reactive oxygen species levels, and apoptosis rates in coelomocytes. Conversely, these adverse effects were mitigated by Pb/NOR exposure compared to Pb treatment alone. Further analysis of the gut microbiota revealed that Cu/Pb-tolerant Bacillus spp. play a critical mediating role in the contrasting toxicity profiles. ERY reduced the abundance of Bacillus spp., diminishing their ability to secrete soluble phosphate to immobilize Cu in the gut and leading to increased Cu absorption and toxicity. NOR enriches Bacillus spp. in the gut, facilitating Pb immobilization and reducing Pb bioavailability and toxicity. The contrast toxicity profile revealed the response of the gut microbiota taxa is the primary determinant of the variation in CMAP toxicity. These findings advance our understanding of the impact of CMAP on soil organisms and highlight the need for comprehensive ecological risk assessments to inform regulatory strategies.

期刊论文 2025-06-01 DOI: 10.1016/j.envpol.2025.126166 ISSN: 0269-7491

Heavy metals (HM) in agricultural soils are a significant threat to crop productivity, adversely affecting plant growth and development through various physiological and biochemical mechanisms. Among the HM, nickel (Ni) has been reported to be increasingly accumulated in the soil and is a serious threat to human health via the food chain. Poor seedlings growth and low-quality produce are major causes of Ni toxicity in plants. The current study aimed to assess the effect of activated pomegranate peel biochar (APPB) on morpho-physiological and biochemical processes of wheat grown in Ni-affected soil. Different treatments i.e. control, biochar, Ni, and biochar + Ni were designed under randomized complete block design with six replications of each treatment. The morphological, biochemical, and physiological responses were then evaluated. Present results revealed the growth decline in wheat seedlings subjected to Ni toxicity. Moreover, disturbances in photosynthetic pigments, metabolites, and thiol group were recorded in seedlings under excess of Ni content. The findings of this study demonstrate that the application of APPB supplementation significantly alleviated the negative effect of Ni on wheat seedlings and improved growth parameters by 171%, 83%, 330%, 78%, and 96% in shoot biomass, shoot length, root biomass, root length, and seedlings dry weight, respectively. Chlorophyll a, b, and total chlorophyll contents boosted by 44%, 83%, and 55%. Carbohydrate content also increased by 82%, while total phenols and flavonoids were reduced by 24% and 22%, respectively. The stunted growth and irregular photosynthesis were recorded in wheat seedlings due to nickel toxicity. Hence, APPB proved to be an effectives soil amendment, that may be used for improved crop growth with enhanced and increasing tolerance to metal stress through the modulation of defense indices.

期刊论文 2025-05-30 DOI: 10.1007/s42729-025-02482-0 ISSN: 0718-9508

Heavy metals (HMs) contamination is a major issue produced by industrial and mining processes, among other human activities. The capacity of fungi to eliminate HMs from the environment has drawn attention. However, the main process by which fungi protect the environment against the damaging effects of these HMs, such as cadmium (Cd), is still unknown. In this study, some fungi were isolated from HMs-polluted soil. The minimum inhibitory concentrations (MICs) and the tolerance indices of the tested isolates against Cd were evaluated. Moreover, molecular identification of the most tolerant fungal isolates (Aspergillus niger and A. terreus) was done and deposited in the GenBank NCBI database. The results showed that the colony diameter of A. niger and A. terreus was decreased gradually by the increase of Cd concentration. Also, all the tested parameters were influenced by Cd concentration. Lipid peroxidation (MDA content) was progressively increased by 12.95-105.95% (A. niger) and 17.27-85.38% (A. terreus), respectively, from 50 to 200 mg/L. PPO, APX, and POD enzymes were elevated in the presence of Cd, thus illustrating the appearance of an oxidative stress action. Compared to the non-stressed A. niger, the POD and PPO activities were enhanced by 92.00 and 104.24% at 200 mg/L Cd. Also, APX activity was increased by 58.12% at 200 mg/L. Removal efficiency and microbial accumulation capacities of A. niger and A. terreus have also been assessed. Production of succinic and malic acids by A. niger and A. terreus was increased in response to 200 mg/L Cd, in contrast to their controls (Cd-free), as revealed by HPLC analysis. These findings helped us to suggest A. niger and A. terreus as the potential mycoremediation microbes that alleviate Cd contamination. We can learn more about these fungal isolates' resistance mechanisms against different HMs through further studies.

期刊论文 2025-05-15 DOI: 10.1186/s12866-025-04000-9 ISSN: 1471-2180

Seabed instability is one of the important reasons for offshore structure damage. Unlike most previous studies that treated the oscillatory and residual response separately, a coupled model for wave-induced response in non- homogeneous seabeds is proposed in the present study. Effects of spatial derivative terms in seabed parameters are introduced into the accumulation of pore pressure. Model validations are conducted by comparing the present simulation with the previous analytical solutions, wave flume tests, and numerical simulations. The validated model is applied to investigate the effects of grain size, non-homogeneous distribution of seabed parameters, and non-linear wave conditions on the wave-induced seabed dynamic response and liquefaction. It is found that (1) the oscillatory mechanism in pore pressure variation dominates in the coarser seabed, while the residual mechanism becomes obvious with the decreasing grain size, (2) consideration of the non-uniform permeability and Young's modulus would promote and suppress the pore pressure accumulation and liquefaction, respectively, and (3) the simulation error in pore pressure between homogeneous and non-homogeneous seabeds increases with the increase of the wave nonlinearity.

期刊论文 2025-05-15 DOI: 10.1016/j.oceaneng.2025.120887 ISSN: 0029-8018

It is well known that piles embedded in sand accumulate lateral deformation (displacement and rotation) when subjected to horizontal cyclic loading. The rate of accumulation depends on various parameters, such as loading conditions and properties of the pile-soil system. For nearly rigid piles, such as monopile foundations for offshore wind turbines, an essential aspect is the type of loading, which is determined by the ratio of the cyclic minimum load to cyclic maximum load. Several studies have shown that asymmetric two-way loading generally results in larger accumulated pile deformation compared with other types of loading, especially oneway loading with complete unloading in each cycle. This article presents the planning, execution, and evaluation of physical 1g small-scale model tests on the deformation accumulation of laterally loaded rigid piles due to cyclic loading focusing on soil deformations resulting from various cyclic load ratios. To visualize soil deformation fields and rearrangement processes within the soil profiles, particle image velocimetry (PIV) was applied in the tests. The evaluation of the model test results provides insights into varying accumulation rates and highlights the capabilities as well as limitations of PIV. The observations are summarized under the of findings, which may assist in planning future PIV experiments.

期刊论文 2025-05-01 DOI: 10.1520/GTJ20230546 ISSN: 0149-6115

Pharmaceuticals and personal care products (PPCPs) are examples of emerging pollutants (EPs) that are receiving more attention because of their environmental effect and persistence. In order to investigate the prevalence, origins, environmental destiny, and related dangers of PPCPs, this review gathers contemporary research (2015-2025). It draws attention to how they accumulate in soil, water, and biota, mostly as a result of traditional wastewater treatment technologies' inefficiency. The focus is on advanced detection methods including bioanalytical instruments and high-resolution mass spectrometry (HRMS). The review also discusses how PPCPs contribute to ecological damage and antibiotic resistance, assesses contemporary remediation techniques, and provides guidance for future study and policy development.

期刊论文 2025-04-12 DOI: 10.1080/03067319.2025.2484456 ISSN: 0306-7319

Typically, nanoplastics (NPs) are contaminated before entering soil, and the impact of NPs on the biotoxicity of Persistent Organic Pollutants (POPs) they carry remains unclear. This study simulated two environmentally relevant scenarios: singular exposure of benzo[a]pyrene (BaP) in soil and exposure via NPs loading (NP-BaP). Correlation analysis and machine learning revealed that injury in earthworms exposed for 28 days was significantly associated with NPs. Moreover, when the soil exposure concentration of BaP was 4 mg/kg, the NP-BaP group exhibited 10.67 % greater pigmentation than the BaP-only group. Despite the lower biota soil accumulation factor (BSAF) of earthworms in the NP-BaP group, the concentration of BaP in the soil remained at higher levels in the late stages of exposure. This led to NP-BaP inducing a stronger trend of oxidative damage compared to BaP alone. Furthermore, molecular-level studies indicated that the differential preferences of NPs and BaP for damaging antioxidant enzymes were linked to individual oxidative stress responses. This study confirmed that NPs, at non-toxic concentrations, could increase the persistence of BaP's biological toxicity after prolonged exposure, highlighting the potential safety risks of NPs as carriers of POPs to soil organisms.

期刊论文 2025-04-05 DOI: 10.1016/j.jhazmat.2025.137091 ISSN: 0304-3894
  • 首页
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 末页
  • 跳转
当前展示1-10条  共82条,9页