共检索到 5

This paper reviews the impacts of permafrost change on hydrological and related hydrochemical, particulate and organic fluxes in small Arctic catchments. While the emphasis is directed at High Arctic systems, literature and recent developments from other Arctic regions are also included. Hydrological change, particularly a shift from nival (snowmelt) dominance to increasing pluvial (rainfall) runoff contributions has important consequences for the timing and magnitude of hydrological fluxes. A key distinction is made between thermal perturbation, where changing melt season thaw conditions result in deep thaw with minimal geomorphic or surface hydrological effects, in contrast to physical perturbation, where permafrost change results in some form of thermokarst or physical disturbance such as mass movement or enhanced erosion. The latter disturbances are commonly expressed as localized thermo erosional gullies, active layer detachments and retrogressive thaw slumps. Results from recent research emphasise the importance of hydrological connectivity in terms of the downstream effect of a particular permafrost perturbation. Well-connected systems, either at the surface as channelized flows, or in the subsurface, through new or altered active layer flow pathways, result in substantial changes in downstream fluvial fluxes. Surface hydrological connectivity of localized permafrost disturbances increases transport of suspended sediment and particulate organic matter, the latter of which is often old and comparatively labile. Exposed ice in retrogressive thaw slumps sustains discharge during the melt season, further increasing fluxes. Thermal perturbation holds a substantially greater potential downstream impact due to widespread mobilization of solutes and dissolved organic carbon and nitrogen, and several studies point to rapid microbial alteration of carbon and inorganic nitrogen transformation in the shallow subsurface. Collectively, these results point to altered runoff, sediment transport and hydrochemical fluxes with spatial and hydrological controls.

期刊论文 2019-04-01 DOI: 10.1016/j.earscirev.2019.02.018 ISSN: 0012-8252

Arctic warming may induce slope failure in upland permafrost soils. These landslide-like events, referred to as active layer detachments (ALDs), redistribute soil material into hydrological networks during spring melt and heavy rainfall. In 2011, 2013 and 2014, fluvial sediments from the West River at the Cape Bounty Arctic Watershed Observatory were sampled where ALDs occurred in 2007-2008. Two ALD-impacted subcatchments were examined exhibiting either continuing disturbance or short-term stabilization. Solid-state C-13 nuclear magnetic resonance (NMR) spectroscopy and targeted biomarker analysis via gas chromatography-mass spectrometry were used to investigate shifts in organic matter (OM) composition. Additionally, radiocarbon ages were determined using accelerator mass spectrometry. Biomarker concentrations and O-alkyl carbon assessed via NMR were both lower in sediments nearest the active disturbance and increased in sediments downstream where other aquatic inputs became more dominant. This suggests immobilization of recalcitrant OM near the ALD and the sustained transport of labile ALD-derived OM further downstream. Shifts toward older radiocarbon dates along the river between 2011 and 2014 suggest the continued transport of permafrost-derived OM downstream. The stabilizing subcatchment revealed high O-alkyl carbon via NMR and increased concentrations of unaltered terrestrial-derived biomarkers indicative of enhanced OM accumulation following ALD activity. The relatively young radiocarbon ages from these sediments suggest accumulation from contemporary sources and potential burial of the previously dispersed ALD inputs. Within the broader context of Arctic climate change, these results portray a complex environmental trajectory for thaw-released permafrost-derived OM and highlight uncertainty in the relationship between lability and persistence upon release by permafrost disturbance. (C) 2018 Elsevier Ltd. All rights reserved.

期刊论文 2018-09-01 DOI: 10.1016/j.orggeochem.2018.07.004 ISSN: 0146-6380

Arctic landscapes are experiencing intense warming and modification of precipitation regimes with climate change. Permafrost disturbances and climate change impacts on hydrology of Arctic watersheds are likely to modify the quantity and composition of exported dissolved organic matter (DOM). In July 2007, intense rainfall and active layer thickening caused widespread active layer detachments at Cape Bounty, Melville Island (Canada). This study investigates the impacts of seasonal hydrology and permafrost disturbance on DOM composition exported from High Arctic headwater catchments. In 2012, streams were sampled from three disturbed catchments and one undisturbed catchment. The composition of DOM was characterized using absorbance and fluorescence spectroscopy. DOM was mostly exported during the spring freshet. Throughout this period, the undisturbed catchment exported humifiedDOMwith high humic-like fluorescence that likely originated from runoff through shallow organic rich soil. In contrast, DOM exported from disturbed catchments was fresher, less humified with a high proportion of low molecular weight humic acid. We demonstrate that disturbed catchments delivered likely more labile DOM derived from either thawed permafrost or enhanced microbial activity. If this labile DOM comes from an ancient pool, as indicated by other studies at this site, disturbances may strengthen the permafrost carbon feedback on climate change.

期刊论文 2017-06-01 DOI: 10.1139/as-2016-0031

With increased warming in the Arctic, permafrost thaw may induce localized physical disturbance of slopes. These disturbances, referred to as active layer detachments (ALDs), redistribute soil across the landscape, potentially releasing previously unavailable carbon (C). In 2007-2008, widespread ALD activity was reported at the Cape Bounty Arctic Watershed Observatory in Nunavut, Canada. Our study investigated organic matter (OM) composition in soil profiles from ALD-impacted and undisturbed areas. Solid-state C-13 nuclear magnetic resonance (NMR) and solvent-extractable biomarkers were used to characterize soil OM. Throughout the disturbed upslope profile, where surface soils and vegetation had been removed, NMR revealed low O-alkyl C content and biomarker analysis revealed low concentrations of solvent-extractable compounds suggesting enhanced erosion of labile-rich OM by the ALD. In the disturbed downslope region, vegetation remained intact but displaced material from upslope produced lateral compression ridges at the surface. High O-alkyl content in the surface horizon was consistent with enrichment of carbohydrates and peptides, but low concentrations of labile biomarkers (i.e., sugars) suggested the presence of relatively unaltered labile-rich OM. Decreased O-alkyl content and biomarker concentrations below the surface contrasted with the undisturbed profile and may indicate the loss of well-established pre-ALD surface drainage with compression ridge formation. However, pre-ALD profile composition remains unknown and the observed decreases may result from nominal pre-ALD OM inputs. These results are the first to establish OM composition in ALD-impacted soil profiles, suggesting reallocation of permafrost-derived soil C to areas where degradation or erosion may contribute to increased C losses from disturbed Arctic soils.

期刊论文 2016-07-01 DOI: 10.1007/s10533-016-0215-7 ISSN: 0168-2563

Localized permafrost disturbances such as active layer detachments (ALDs) are increasing in frequency and severity across the Canadian Arctic impacting terrestrial ecosystem functioning. However, the contribution of permafrost disturbance-carbon feedbacks to the carbon (C) balance of Arctic ecosystems is poorly understood. Here, we explore the short-term impact of active layer detachments (ALDs) on carbon dioxide (CO2) exchange in a High Arctic semi-desert ecosystem by comparing midday C exchange between undisturbed areas, moderately disturbed areas (intact islands of vegetation within an ALD), and highly disturbed areas (non-vegetated areas due to ALD). Midday C exchange was measured using a static chamber method between June 23 and August 8 during the 2009 and 2010 growing seasons. Results show that areas of high disturbance had significantly reduced gross ecosystem exchange and ecosystem respiration (R (E)) compared to control and moderately disturbed areas. Moderately disturbed areas showed significantly enhanced net ecosystem exchange compared to areas of high disturbance, but were not significantly different from control areas. Disturbance did not significantly impact soil thermal, physical or chemical properties. According to average midday fluxes, ALDs as a whole (moderately disturbed areas: -1.942 mu mol m(-2) s(-1)+ highly disturbed areas: 2.969 mu mol m(-2) s(-1)) were a small CO2 source of 1.027 mu mol m(-2) s(-1) which did not differ significantly from average midday fluxes in control areas 1.219 mu mol m(-2) s(-1). The findings of this study provide evidence that the short-term impacts of ALDs on midday, net C exchange and soil properties in a High Arctic semi-desert are minimal.

期刊论文 2014-10-01 DOI: 10.1007/s00300-014-1536-4 ISSN: 0722-4060
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-5条  共5条,1页