共检索到 2

Large amounts of organic carbon are stored in Arctic permafrost environments, and microbial activity can potentially mineralize this carbon into methane, a potent greenhouse gas. In this study, we assessed the methane budget, the bacterial methane oxidation (MOX) and the underlying environmental controls of arctic lake systems, which represent substantial sources of methane. Five lake systems located on Samoylov Island (Lena Delta, Siberia) and the connected river sites were analyzed using radiotracers to estimate the MOX rates, and molecular biology methods to characterize the abundance and the community composition of methane-oxidizing bacteria (MOB). In contrast to the river, the lake systems had high variation in the methane concentrations, the abundance and composition of the MOB communities, and consequently, the MOX rates. The highest methane concentrations and the highest MOX rates were detected in the lake outlets and in a lake complex in a flood plain area. Though, in all aquatic systems, we detected both, Type I and II MOB, in lake systems, we observed a higher diversity including MOB, typical of the soil environments. The inoculation of soil MOB into the aquatic systems, resulting from permafrost thawing, might be an additional factor controlling the MOB community composition and potentially methanotrophic capacity.Lake systems on Samoylov Island (Lena Delta) in contrast to the Lena River showed high variation in the methane concentration, the abundance and composition of MOB communities and consequently methane oxidation rates.Lake systems on Samoylov Island (Lena Delta) in contrast to the Lena River showed high variation in the methane concentration, the abundance and composition of MOB communities and consequently methane oxidation rates.

期刊论文 2016-08-01 DOI: 10.1093/femsec/fiw116 ISSN: 0168-6496

Greenland is one of the regions of interest with respect to climate change and global warming in the Northern Hemisphere. Little is known about the structure and diversity of the terrestrial bacterial communities in ice-free areas in northern Greenland. These soils are generally poorly developed and usually carbon- and nitrogen-limited. Our goal was to provide the first insights into the soil bacterial communities from five different sites in Northeast Greenland using culture-independent and culture-dependent methods. The comparison of environmental and biological data showed that the soil bacterial communities are diverse and significantly pH-dependent. The most frequently detected OTUs belonged to the phyla Acidobacteria, Bacteroidetes and (Alpha-, Beta-, Delta-) Proteobacteria. Low pH together with higher nitrogen and carbon concentrations seemed to support the occurrence of (Alpha-, Beta-, Delta-) Proteobacteria (at the expense of Acidobacteria), whereas Bacteroidetes were predominant at higher values of soil pH. Our study indicates that pH is the main factor for shaping bacterial community, but carbon and nitrogen concentrations as well may become important, especially for selecting oligotrophic microorganisms.

期刊论文 2014-08-01 DOI: 10.1111/1574-6941.12352 ISSN: 0168-6496
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-2条  共2条,1页