The soil ecosystem has been severely damaged because of the increasingly severe environmental problems caused by excessive application of phosphorus (P) fertilizer, which seriously hinders soil fertility restoration and sustainable farmland development. Shoot P uptake (SPU) is an important parameter for monitoring crop growth and health and for improving field nutrition management and fertilization strategies. Achieving on-site measurement of large-scale data is difficult, and effective nondestructive prediction methods are lacking. Improving spatiotemporal SPU estimation at the regional scale still poses challenges. In this study, we proposed a combination prediction model based on some representative samples. Furthermore, using the experimental area of Henan Province, as an example, we explored the potential of the hyperspectral prediction of maize SPU at the canopy scale. The combination model comprises predicted P uptake by maize leaves, stems, and grains. Results show that (1) the prediction accuracy of the combined prediction model has been greatly improved compared with simple empirical prediction models, with accuracy test results of R 2 = 0.87, root mean square error = 2.39 kg/ha, and relative percentage difference = 2.71. (2) In performance tests with different sample sizes, two-dimensional correlation spectroscopy i.e., first-order differentially enhanced two-dimensional correlation spectroscopy (1Der-2DCOS) and two-trace 2DCOS of enhanced filling and milk stages (filling-milk-2T2DCOS)) can effectively and robustly extract spectral trait relationships, with good robustness, and can achieve efficient prediction based on small samples. (3) The hybrid model constrained by the Newton-Raphson-based optimizer's active learning method can effectively filter localized simulation data and achieve localization of simulation data in different regions when solving practical problems, improving the hybrid model's prediction accuracy. The practice has shown that with a small number of representative samples, this method can fully utilize remote sensing technology to predict SPU, providing an evaluation tool for the sustainable use of agricultural P. Therefore, this method has good application prospects and is expected to become an important means of monitoring global soil P surplus, promoting sustainable agricultural development.
This research presents an efficient computational method for retrofitting of buildings by employing an active learning-based ensemble machine learning (AL-Ensemble ML) approach developed in OpenSees, Python and MATLAB. The results of the study shows that the AL-Ensemble ML model provides the most accurate estimations of interstory drift (ID) and residual interstory drift (RID) for steel structures using a dataset of 2-, to 9-story steel structures considering four soil type effects. To prepare the dataset, 3584 incremental dynamic analysis (IDA) were performed on 64 structures. The research employs 6-, and 8-story structures to validate the AL-Ensemble ML model's effectiveness, showing it achieves the highest accuracy among conventional ML models, with an R-2 of 98.4%. Specifically, it accurately predicts the RID of floor levels in a 6-story structure with an accuracy exceeding 96.6%. Additionally, the programming code identifies the specific damaged floor level in a building, facilitating targeted local retrofitting instead of retrofitting the entire structure promising a reduction in retrofitting costs while enhancing prediction accuracy.