共检索到 2

According to the monitoring data of the optical and microphysical characteristics of smoke aerosol at AERONET stations during forest fires in the summer of 2019 in Alaska, the anomalous selective absorption of smoke aerosol has been detected in the visible and near-infrared spectral range from 440 to 1020 nm. With anomalous selective absorption, the imaginary part of the refractive index of smoke aerosol reached 0.315 at a wavelength of 1020 nm. A power-law approximation of the spectral dependence of the imaginary part of the refractive index with an exponent from 0.26 to 2.35 is proposed. It is shown that, for anomalous selective absorption, power-law approximations of the spectral dependences of the aerosol optical extinction and absorption depths are applicable with an angstrom ngstrom exponent from 0.96 to 1.65 for the aerosol optical extinction depth and from 0.97 to -0.89 for the aerosol optical absorption depth, which reached 0.72. Single scattering albedo varied from 0.62 to 0.96. In the size distribution of smoke aerosol particles with anomalous selective absorption, the fine fraction of particles of condensation origin dominated. The similarity of the fraction of particles distinguished by anomalous selective absorption with the fraction of tar balls (TBs) detected by electron microscopy in smoke aerosol, which, apparently, arise during the condensation of terpenes and their oxygen-containing derivatives, is noted.

2023-12-01 Web of Science

Knowledge of aerosol size and composition is very important for investigating the radiative forcing impacts of aerosols, distinguishing aerosol sources, and identifying harmful particulate types in air quality monitoring. The ability to identify aerosol type synoptically would greatly contribute to the knowledge of aerosol type distribution at both regional and global scales, especially where there are no data on chemical composition. In this study, aerosol classification techniques were based on aerosol optical properties from remotely-observed data from the Ozone Monitoring Instrument (OMI) and Aerosol Robotic Network (AERONET) over Saudi Arabia for the period 2004-2016 and validated using data from the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO). For this purpose, the OMI-based Aerosol Absorption Optical Depth (AAOD) and UltraViolet Aerosol Index (UVAI), and AERONET-based AAOD, Angstrom Exponent (AE), Absorption Angstrom Exponent (AAE), Fine Mode Fraction (FMF), and Single Scattering Albedo (SSA) were obtained. Spatial analysis of the satellite-based OMI-AAOD showed the dominance of absorbing aerosols over the study area, but with high seasonal variability. The study found significant underestimation by OMI AAOD suggesting that the OMAERUV product may need improvement over bright desert surfaces such as the study area. Aerosols were classified into (i) Dust, (ii) Black Carbon (BC), and (iii) Mixed (BC and Dust) based on the relationships technique, between the aerosol absorption properties (AAE, SSA, and UVAI) and size parameters (AE and FMF). Additionally, the AE vs. UVAI and FMF vs. UVAI relationships misclassified the aerosol types over the study area, and the FMF vs. AE, FMF vs. AAE and FMF vs. SSA relationships were found to be robust. As expected, the dust aerosol type was dominant both annually and seasonally due to frequent dust storm events. Also, fine particulates such as BC and Mixed (BC and Dust) were observed, likely due to industrial activities (cement, petrochemical, fertilizer), water desalination plants, and electric energy generation. This is the first study to classify aerosol types over Saudi Arabia using several different aerosol property relationships, as well as over more than one site, and using data over a much longer time-period than previous studies. This enables classification and recognition of specific aerosol types over the Arabian Peninsula and similar desert regions.

2020-11-15 Web of Science
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-2条  共2条,1页