Soil aggregate stability and pore structure are key indicators of soil degradation. Waves generated by the water-level fluctuations could severely deteriorate soil aggregates, which eventually induce soil erosion and several other environmental issues such as sedimentation and flooding. However, due to limited availability of the hydrological alteration data, there is a limited understanding of soil aggregates, intra-aggregate pore dynamics, and their relationships under periodically flooded soils. The present study has relied on long-term hydrological alteration data (2006-2020) to explore the impacts of inundation and exposure on soil aggregates and pore structure variations. Soil samples from increasing elevations (155, 160, 163, 166, 169, and 172 m) in the water-level fluctuation zone of the Three Gorges Reservoir were exposed to wet-shaking stress and determined soil structural parameters. The overall inundation and exposure ratio (OvI/E) gradually decreased from 1.87 in the lowest to 0.27 in the highest elevation, respectively. Predominant distribution of macropores was recorded in lower elevations, while micropores were widely distributed in the upper elevations. The mean weight diameter (MWD) was significantly lower in the lower (2.4-3.7 mm) compared to upper (5.3-6.0 mm) elevations. The increase in MWD has increased the proportion of micropores (PoN < 50 mu m), with R-2 = 0.59. This could suggest that the decrease in flooding intensity can create favorable conditions for plant roots growth. The strong flooding stress in lower elevations (i.e., higher values of the OvI/E) accelerated the disintegration of soil aggregates and considerably increased the formation of macropores due to slaking and cracking. The findings of the present study emphasize the need to restore degraded soils in periodically submerged environments by implementing vegetation restoration measures. This could enhance and sustain aggregate stability, which was also proved to increase functional pores under hydrological alterations.
PurposeThis study aims to investigate the effects of root exudates on the aggregate stability and permeability of loess and to further reveal the mechanisms of vegetation in preventing and controlling soil erosion beyond mechanical effects.Materials and methodsWetting tests were conducted to investigate how loess aggregate stability varies with curing time and root exudate concentration; and infiltration tests were carried out to examine the influence of root exudates on the infiltration characteristics of loess with varying degrees of compaction.Results and discussionThe results showed that the stability of loess aggregates significantly increased due to the application of root exudates. Curing could enhance the stabilizing effects of root exudates on loess aggregates; however, there existed a critical curing duration. The application of root exudates reduced the stable infiltration rate and hydraulic conductivity of loess. However, untreated specimens under lower degrees of compaction exhibited lower stable infiltration rate and hydraulic conductivity due to local structural damage. The stable infiltration rate of both treated and untreated specimens decreased with curing time.ConclusionsThe effects of root exudates can be attributed to their ability to function as stabilizing agents and promote aggregation, due to their high adsorption capacities and negatively charged groups on their surfaces. On the other hand, the presence of root exudates can significantly enhance the soil microbial activity, the microorganisms and their hyphae further strengthen the soil structure, fill pores and increase the soil hydrophobicity, thereby improving the aggregate stability while reducing the soil permeability.
Biosolids can be blended with edaphic components to formulate customized soil mixes (Technosols), where specific nutrient levels, moisture content, and other factors are tailored to support plant growth. The aim of this work was to evaluate constructed Technosols regarding specific physical, rheological, and biochemical characteristics, as well as for their ability to meet the growth requirements of rye grass. Soil horizons A and C, and quarry waste, were examined both individually as controls and in binary combinations with biosolids, maintaining a ratio of 70:30 in a replicated pot experiment. After 35 days, half of the pots were seeded with ryegrass (Lolium perenne ssp). After 3,5 months, the following physical, chemical, and rheological properties were measured: bulk density; plastic limit; liquid limit; saturated hydraulic conductivity; aggregate stability, organic matter and total Kjeldahl nitrogen. Enzyme activities were determined using fluorogenic substrates, whereas total bacterial and fungal composition was assessed through qPCR and amplicon sequencing using respectively 16S rRNA gene and ITS gene primers. Biosolids-based Technosols exhibited soil-like behavior across various examined variables, such as aggregate stability, microbial community composition and the yield of harvested plant biomass. Changes in the physical and chemical characteristics of mixtures containing biosolids were accompanied by corresponding changes in enzyme activities, as well as by shifts in absolute bacterial and fungal abundance. Biosolid-based Technosols possess the capability to establish sustainable and effective aggregation conditions, maintaining satisfactory water retention levels, and fostering favorable microbiological and biochemical conditions to fulfill essential soil functions, including biomass production.
Water loss in paddy fields occurs through various pathways, and previous studies have primarily focused on water seepage in the field, often overlooking the potential for the field-bund area. In this study, 3 typical paddy fields in the plain river network area of southeastern China were selected to clarify the differences in the soil structure and hydraulic characteristics at different positions within the field-bund area: the field, inner bund, middle bund and outer bund. The interactions between basic soil properties and hydraulic characteristics were also evaluated. The results revealed that the outer bund presented the lowest soil porosity (6.92 %), followed by the field (7.52 %), middle bund (7.77 %), and inner bund (8.09 %). The soil pores in the field presented the smallest mean diameter and fractal dimension and the highest degree of anisotropy. The deep layer of the bund contained more macropores, and the soil pores exhibited greater spatial distribution heterogeneity. The bottom layer in the field and bund presented the lowest average Ks value of only 0.05 mm min(-1), indicating the presence of a plow pan and a notable tendency for lateral seepage. Differences in the soil structure and hydraulic parameters between the field and bund created a driving force for lateral seepage and rendered the field-bund area a hotspot for water loss. For the analysis of the underlying water loss mechanism, the structural equation model represented 65 % of the total variance in the hydraulic parameters. The micropore characteristics had the greatest positive direct effect on the hydraulic parameters, with a standardized path coefficient of 0.39 (p < 0.001). The soil physical properties were not directly related to the hydraulic parameters but exerted an indirect effect through aggregate stability and micropore and macropore characteristics, with a total indirect standardized path coefficient of -0.41.
Soil erosion is a key concern with regard to ecosystem functionality and food, fibre and bioenergy productions worldwide. Therefore, understanding the mechanisms and controls of soil erosion, particularly the link between soil aggregate stability and soil erodibility, is of utmost importance. The use of disturbed samples and sieved soil to determine the involved erodibility and aggregate stability is standard in soil erosion studies. However, soil erodibility estimation based on disturbed-soil samples can be inaccurate as it involves changes in the architecture of the considered soil, possibly leading to overestimations. Moreover, a necessity for evaluating soil erodibility beyond intrinsic soil characteristics (e.g. texture) exists. The objective of this research was to assess the erodibility impact of soil disturbance. Undisturbed-soil cores with dimensions of 45 cm (length) x 30 cm (width) x 10 cm (depth) were extracted while preserving their architecture. An A horizon corresponding to brown clayey subtropical oxisol soil from Southern Brazil was used for performing an experiment that involved simulation of 58-mm h-1 rain for 30 min. A total of seven replicate experiments were performed for each soil condition (i.e. undisturbed and disturbed soils). Results show that soil architecture deterioration had a larger impact on the involved soil loss than runoff. Further, soil structure failure did not affect the aggregate stability per se. Notably, the soil erodibility and loss were approximately 10 times larger under the disturbed-soil condition than under the undisturbed-soil condition (interrill erodibility: 4.30 x 107 and 4.39 x 106 kg s m-4, respectively; soil loss: 0.925 and 0.094 kg m-2, respectively). Overall, the intrinsic soil characteristics did not change; however the soil architecture deterioration considerably increased the erodibility. The damage of the soil structure did not affect the aggregate stability per se. Soil failure architecture increases soil erodibility by 10 times. Soil architecture is more important to erodibility than soil intrinsic properties. image
Soil aggregate mechanical properties are of vital importance for plant growth, tillage and soil erosion, and strongly conditioned by the amount and type of cementing agents that differ with soils. As most research focus at the site scale, how aggregate mechanical stability vary across different types of soils at regional scales and underlying mechanisms remain poorly understood. Herein, seven typical zonal soils in heavy textures with an increased status of soil development were collected under two land uses (arable and forest) and at three pedogenic horizons along the mid-temperate to south-subtropical climatic gradient in the East Asian monsoon region. Aggregate tensile strength (Y), specific rupture energy (E-sp) and friability (FI) were measured on air-dried aggregates in a compression test, as well as soil cementing agents related to particle size distribution, organic matter and its components, metal oxides, phyllosilicates and exchangeable cations. Y and E-sp were most affected by soil type (F = 37.7 and 21.4, p 0.01), suggesting the predominant roles of the inorganic cementing agents in aggregate mechanical stability across soil types. Aggregate mechanical stability was increased by exchangeable polyvalent cations and vermiculite (r = 0.71 similar to 0.81, p < 0.001), and weakened by crystalline Fe and Al oxides (r = -0.77 similar to -0.74, p < 0.001). Additionally, mean annual precipitation and temperature were negatively correlated with aggregate mechanical stability (r = -0.80 similar to -0.76, p < 0.001). This study demonstrates the remarkable geographic variations of aggregate mechanical stability under the influence of climate and highlights the importance of clay mineralogy (mainly swelling clay and crystalline Fe and Al oxides) and exchangeable cations at the regional scale.
Biochar application, as a kind of soil amendment, significantly influences soil physical and mechanical properties. This study revealed the effects of biochar application on the physical and mechanical properties of a clay-type soil at different irrigation levels. Soil was treated with three levels of biochar application: B0 (0 t ha(-1)), B1 (25 t ha-(1)) and B2 (50 t ha b(-1)), and three levels of irrigation: T0 (1.2 pan evaporation Ep), T1 (1.0 Ep) and T2 (0.8 Ep). The results indicated that other treatments reduced the soil bulk density compared with the control treatment (CK) (B0T1). Compared to CK, the highest reduction in soil bulk density was 18%. Irrigation did not improve the soil bulk density and porosity at the same biochar application in the short term. Biochar enhanced the stability of the soil aggregates. Compared to CK, the largest MWD (mean weight diameter) was enhanced by 9%. The addition of biochar and decreasing irrigation could decrease soil cohesion. The addition of biochar and increasing irrigation could increase the soil internal friction angle. The soil cohesion first increased and then decreased as the soil water content increased. According to the fitting formula, the soil cohesion was found to be minimum at B2T2, which was a decrease of 39% compared to B0T1. At the same irrigation level, the soil internal friction angle decreased with increasing soil water content. Soil penetration resistance showed a decreasing trend with the application of biochar. The more irrigation there is, the larger the soil penetration resistance.
Geological hazards such as gully erosion, collapse and slope failure occur frequently in loess areas, which are closely related to the soil disintegration characteristics. Understanding the impact of freeze-thaw and wet-dry action on soil disintegration in the context of climate change is essential to establish effective soil and water conservation strategies and prevent engineering geological hazards in loess areas. In this study, sodic-saline loessial soils with different clay content were subjected to freeze-thaw and wet-dry cycles, followed by aggregate durability tests, direct shear tests and disintegration tests to investigate the effects of the two natural processes on soil disintegration characteristics. The results showed that the samples subjected to freeze-thaw cycles primarily exhibited rapid and stable disintegration, followed by slow disintegration, whereas the samples subjected to wet-dry cycles revealed weight gain, continuous slow disintegration and eventual sudden disintegration. Freeze-thaw action continuously deteriorated the disintegration resistance of soil, while wet-dry action improved the disintegration resistance of soil after the first cycle, and gradually weakened it in subsequent cycles. Statistical analysis showed that, for samples undergoing freeze-thaw cycles, the number of cycles and clay content were positively correlated with the disintegration rate, while the aggregate durability was negatively correlated with the disintegration rate. For samples undergoing wet-dry cycles, the number of cycles had a positive effect on the disintegration rate, while the clay content, shear strength and cohesion had a negative correlation with the disintegration rate. At a certain clay content, there was a positive correlation observed between the surface crack ratio, crack length and width with the disintegration rate of the wet-dry samples, while shear strength and cohesion had a negative correlation with the disintegration rate of both freeze-thaw and wet-dry samples. Furthermore, the study outlined the disintegration mechanism of loessial soils based on internal factors, driving factors, resistance factors and evolutionary factors. This study contributes to the in-depth understanding of the catastrophic mechanism of geological hazards in cold and arid areas and provides experimental evidence for its control and management. The study outlined the disintegration mechanism of loessial soils based on internal factors, driving factors, resistance factors and evolutionary factors. image
The impact of daily cattle migration from homesteads to higher altitude pastures creates severe erosion in the montane grasslands of the predominantly subsistence agricultural rural communities of KwaZulu-Natal, Drakensberg, South Africa. This study quantifies the impact of a degraded cattle path at up, mid and downslope positions on SOC and N distribution in the soil profile and within the soil aggregates. An attempt to evaluate sites of erosion and deposition using excess lead-210 (210Pbex) to support our findings was conducted. On average, the degraded cattle path reduced SOC and N in the bulk soil (by 3-4 times, respectively) and was associated with 53% reduction in aggregate stability and a 14% increase in soil bulk density over the non-degraded reference site. These results reflect the loss of vegetation cover (correlated positively to SOC and N (r approximate to 0.94)), which were triggered by cattle grazing and trampling leading to top-soil loss. Cattle hoofs damage the grass and breakdown soil aggregates, exposing the fertile topsoil particles to detachment and consequential transportation via rill and sheet erosion. This is supported by the loss of 210Pbex in the topsoil of the degraded slope positions relative to the reference site. Consistent down core mixing of 210Pbex activity in degraded slope sites supports evidence of cattle mediated soil mixing. Our findings highlight the accelerated land degradation that results from uncontrolled grazing and movement of cattle on sloping lands in the Okhombe Valley. Developing an integrated management strategy co-led by local communities to develop proactive participatory sustainable land use practices is critical for long-term landscape maintenance and recovery in the region.
Background: Vegetation roots are considered to play an effective role in controlling soil erosion by benefiting soil hydrology and mechanical properties. However, the correlation between soil hydrology and the mechanical features associated with the variation root system under different vegetation types remains poorly understood. Methods: We conducted dye-tracer infiltration to classify water flow behavior and indoor experiments (including tests on soil bulk density, soil organic carbon, mean weight diameter, soil cohesion, root density, etc.) to interpret variation patterns in three forest systems (coniferous and broad-leaved mixed forest, CBF; coniferous forest, CF; Phyllostachys edulis, PF) and fallow land (FL). Results: Based on the soil dye-tracer infiltration results, the largest dyeing area was observed in CF (36.96%), but CF also had the lowest infiltration rate (60.3 mm center dot min(-1)). The soil under CBF had the highest shear strength, approximately 25% higher than other vegetation types. CF exhibited the highest aggregate stability, surpassing CBF by 98.55%, PF by 34.31%, and FL by 407.41%, respectively. Additionally, PF forests showed the greatest root biomass and length. The results of correlation analysis and PCA reveal complex relationships among hydrological and mechanical soil traits. Specifically, soil cohesion does not exhibit significant correlations with hydrological traits such as the dyeing area, while traits like MWD and PAD show either positive or negative associations with hydrological traits. Root traits generally exhibit positive relationships with soil mechanical traits, with limited significant correlations observed with hydrological traits. Conversely, we found that root biomass contributes significantly to the dyeing area (accounting for 51.48%). Conclusions: Our findings indicate that the reforestation system is a successful approach for conserving water and reducing erosion by increasing soil-aggregated stability and shear strength, causing water redistribution to be more homogenized across the whole soil profile.