共检索到 4

The use of chemical pesticides in agriculture leads to the accumulation of harmful compounds in soil and plants that can cause diseases of humans and animals. The biological method of plant protection is a promising alternative to chemical pesticides. The purpose of this study was to analyze the antagonistic activity of the Acinetobacter sp. GET13 strain against common bacterial and fungal pathogens of plant diseases in in vitro and in planta experiments. As a result, the effect of the bacterium on the growth of phytopathogenic bacteria (Clavibacter michiganensis, Erwinia carotovora, Pectobacterium carotovorum and Pseudomonas syringae), as well as phytopathogenic fungi (Helminthosporium sativum, Piricularia oryzae.) that cause serious damage to agriculture, was studied. To confirm the results obtained in these experiments, an in planta experiment was conducted on Phaseolus vulgaris (L.) The effectiveness of Acinetobacter GET13 strain for plant protection against phytopathogens was proved based on the results of taking into account the linear function between weight and volume parameters of plants at the end of the experiment. Therefore, this strain has the potential to create a biological product.

期刊论文 2025-06-01 DOI: 10.1134/S000368382460773X ISSN: 0003-6838

Considerable losses are inflicted by plant-parasitic nematodes (PPNs) due to their obligate parasitism; serious damage occurs in many susceptible crops, and the parasites have a broad distribution worldwide. As most PPNs have a subterranean nature, the complexity of soils in the plant rhizosphere and the structures and functions of the soil food webs necessitate a grasp of the relevant biotic/abiotic factors in order to ensure their effective control. Such factors frequently lead to the inconsistent performance and untapped activity of applied bionematicides, hindering efforts to develop reliable ones. Research efforts that take these factors into account to back the usage of these bionematicides by combining the disease-suppressive activities of two or more agricultural inputs are highlighted herein. These combinations should be designed to boost useful colonization in the rhizosphere, persistent expression of desirable traits under a wide range of soil settings, and/or antagonism to a larger number of plant pests/pathogens relative to individual applications. Relevant ecological/biological bases with specific settings for effective PPN management are exemplified. Determining the relative sensitivity or incompatibility of some biologicals entails studying their combinations and reactions. Such studies, as suggested herein, should be conducted on a case-by-case basis to avoid unsatisfactory outputs. These studies will enable us to accurately define certain outputs, namely, the synergistic, additive, neutral, and antagonistic interactions among the inputs. In optimizing the efficiencies of these inputs, researchers should consider their multi-functionality and metabolic complementarity. Despite previous research, the market currently lacks these types of safe and effective products. Hence, further explorations of novel integrated pest management plans that boost synergy and coverage to control multiple pathogens/pests on a single crop are required. Also, setting economic incentives and utilizing a standardized regulation that examines the authentic risks of biopesticides are still called for in order to ease cost-effective formulation, registration, farmer awareness, and usage worldwide. On the other hand, tank mixing that ensures legality and avoids physical and chemical agro-input-based incompatibilities can also provide superior merits. The end in view is the unraveling of the complexities of interactions engaged with in applying multiple inputs to develop soundly formulated, safe, and effective pesticides. Sophisticated techniques should be incorporated to overcome such complexities/limitations. These techniques would engage microencapsulation, nanopesticides, volatile organic compounds as signals for soil inhabitants, bioinformatics, and RNA-Seq in pesticide development.

期刊论文 2025-03-23 DOI: 10.3390/plants14071004 ISSN: 2223-7747

The complex and dynamic interactions between fungi and plants constitute a critical arena in ecological science. In this comprehensive review paper, we explore the multifaceted relationships at the fungi-plant interface, encompassing both mutualistic and antagonistic interactions, and the environmental factors influencing these associations. Mutualistic associations, notably mycorrhizal relationships, play a pivotal role in enhancing plant health and ecological balance. On the contrary, fungal diseases pose a significant threat to plant health, agriculture, and natural ecosystems, such as rusts, smuts, powdery mildews, downy mildews, and wilts, which can cause extensive damage and lead to substantial economic losses. Environmental constraints encompassing abiotic and biotic factors are elucidated to understand their role in shaping the fungi-plant interface. Temperature, moisture, and soil conditions, along with the presence of other microbes, herbivores, and competing plants, significantly influence the outcome of these interactions. The interplay between mutualism and antagonism is emphasised as a key determinant of ecosystem health and stability. The implications of these interactions extend to overall ecosystem productivity, agriculture, and conservation efforts. The potential applications of this knowledge in bioremediation, biotechnology, and biocontrol strategies emphasise the importance of adapting to climate change. However, challenges and future directions in this field include the impacts of climate change, emerging fungal pathogens, genomic insights, and the role of the fungi-plant interface in restoration ecology. Hence, this review paper provides a comprehensive overview of fungi-plant interactions, their environmental influences, and their applications in agriculture, conservation, and ecological restoration.

期刊论文 2024-10-25 DOI: 10.3389/ffunb.2024.1363460

Animal experiments suggest that selenium (Se) may alleviate cadmium (Cd) toxicity in animal liver and kidneys, but its effect on human liver and kidneys remains uncertain. In China, areas with black shale have shown elevated levels of Se and Cd. According to the USEPA (U.S. Environmental Protection Agency) evaluation method, the soil and rice in these areas pose significant risks. In black shale regions such as Enshi and Zhuxi County, residents who long-term consume local rice may surpass safe Se and Cd intake levels. Significantly high median blood Se (B-Se) and urine selenium (U-Se) levels were detected in these areas, measuring 416.977 mu g/L and 352.690 mu g/L and 104.527 mu g/L and 51.820 mu g/L, respectively. Additionally, the median blood Cd (B-Cd) and urine Cd (U-Cd) levels were markedly elevated at 4.821 mu g/L and 3.848 mu g/L and at 7.750 mu g/L and 7.050 mu g/L, respectively, indicating substantial Cd exposure. Nevertheless, sensitive liver and kidney biomarkers in these groups fall within healthy reference ranges, suggesting a potential antagonistic effect of Se on Cd in the human body. Therefore, the USEPA method may not accurately assess Cd risk in exposed black shale areas. However, within the healthy ranges, residents in the Enshi study area had significantly greater median levels of serum creatinine and cystatin C, measuring 67.3 mu mol/L and 0.92 mg/L, respectively, than those in Zhuxi did (53.6 mu mol/L and 0.86 mg/L). In cases of excessive Se and Cd exposure, high Se and Cd levels impact the filtration function of the human kidney to some extent. Se is an essential trace element for humans. However, excessive intake of Se can harm humans. Cd is a carcinogen and a chronic potent nephrotoxin that mostly accumulates in the human liver and kidneys. Animal experiments suggest that Se may alleviate Cd toxicity in animal liver and kidneys, but its effect on human liver and kidneys remains uncertain. In China, areas with black shale exposure have shown elevated levels of Se and Cd. According to the USEPA (U.S. Environmental Protection Agency) evaluation method, the soil and rice in these areas pose significant risks. Our results suggested that the exposed black shale areas are simultaneously enriched with Se and Cd. However, residents in these areas were exposed to excessive Se and Cd long-term without significant damage to liver and kidney functions. Therefore, the USEPA method may not accurately assess Cd risk in exposed black shale areas. The risk assessment of heavy metals in high-Se geological background areas cannot be separated from human health surveys. Our study provides evidence for the antagonistic effects of Se and Cd on the human body. Residents in exposed black shale areas consume excessive Se and Cd through local rice Human liver and kidney functions are not significantly damaged in exposed black shale areas The USEPA method may not accurately assess Cd risk in exposed black shale areas

期刊论文 2024-04-01 DOI: 10.1029/2024GH001040 ISSN: 2471-1403
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-4条  共4条,1页