The recent emergence of drug-resistant microorganisms and the prevalence of cancer diseases are both presenting substantial global public health concerns. Silver nanoparticles (AgNPs) have attracted significant attention and are increasingly employed in diverse biomedical applications as agents with antimicrobial and anticancer properties. The study herein focused on the biogenic synthesis of AgNPs employing the cell-free filtrate of the soil-derived bacterium Streptomyces pratensis as a reducing agent. AgNPs were characterized using UV-Vis, FTIR, FE-SEM, and TEM. The study assessed both the antibacterial and anticandidal modes of action, along with the potential anticancer properties of the biosynthesized AgNPs. The spherical, 17-44-nm biosynthesized AgNPs demonstrated strong antimicrobial and antibiofilm activities against pandrug-resistant (PDR) Gram-negative Klebsiella pneumoniae and pathogenic yeast Candida albicans, both of which were isolated from immunosuppressed patients. Dose-dependent interactions between the AgNPs and their anticancer activity were observed. The IC50 values of the AgNPs against the hepatocellular (HepG2) and colon carcinoma (HCT-116) cancer cell lines were approximately 16.5 mu g/mL and 11.5 mu g/mL, respectively. Furthermore, the antimicrobial mechanism of action of AgNPs revealed distinct leakage of sugar, DNA, and proteins from the cell membrane of both K. pneumoniae and C. albicans, as well as increased ROS generation. Moreover, the TEM micrographs depicted the distortion and damage experienced by the microbial cells after exposure to AgNPs. The findings of the current study suggest that biosynthesized AgNPs have the potential to serve as alternative therapeutic agents for combating drug-resistant K. pneumoniae, the yeast C. albicans, in addition to HepG2 and HCT-116 cells.
The genus Arthrobacter is a source of many natural products that are critical in the development of new medicines. Here, we isolated a novel carotenoid from Arthrobacter sp. QL17 and characterized its properties. The carotenoid was extracted with methanol, and purified by column chromatography and semi-preparative HPLC. Based on micrOTOF-Q and NMR analyses, the pigment was chemically characterized as 2,2 '-((((1E,3E,5E,7E,9E,11E,13E,15E,17E,19E)-3,7,14,18-tetramethylicosa-1,3,5,7,9,11,13,15,17,19-decaene-1,20-diyl)bis(2,2,4-trimethylcyclohex-3-ene-3,1-diyl)) bis(ethan-2-yl-1-ylidene))bi(propane-1,3-diol), and named arthroxanthin. The biological activities of arthroxanthin were evaluated with DPPH, ABTS and MTT assays. Arthroxanthin exhibited excellent radical scavenging properties, as shown for 2, 20-diphenyl-1-picrylhydrazyl (DPPH) and 2,2-n-(3,2-ethyl-benzothiazole-6-sulfonic acid) ammonium salt (ABTS), respectively, with IC50s of 69.8 and 21.5 mu g/mL. It also showed moderate anticancer activities against HepG2, Hela, MDAB-231, SW480, and MKN-45 with IC50 values of 107.6, 150.4, 143.4, 195.9, and 145.5 mu g/mL, respectively. Therefore, arthroxanthin derived from Arthrobacter sp. QL17 may be a potent antioxidant and anticancer agent for food and pharmaceutical use.