共检索到 14

As soil acidification occurs due to industrial and agricultural production processes, it can induce the release of rhizotoxic aluminium ions (Al3+) into the soil, ultimately causing aluminium (Al) stress. Excessive Al content in soil exhibits significant phytotoxicity, inhibiting the growth of roots and stems. In this study, we conducted an investigation into the Al stress tolerance of two apple rootstocks, namely 'YZ3' and 'YZ6', and discovered that 'YZ3' exhibited a superior ability to alleviate the inhibitory effects of Al stress on plant growth. By comparing the transcriptomes of two rootstocks, a differentially expressed gene, MdDUF506, containing an unknown functional (DUF) domain, was identified. Overexpression of MdDUF506 in apple and calli enhances the ability to scavenge reactive oxygen species (ROS), subsequently mitigating the oxidative damage induced by Al stress on plant growth and development. Furthermore, MdDUF506 regulates Al stress tolerance by modulating the expression of genes related to Al stress (MdSTOP1, MdRSL1, MdRSL4, MdGL2, and MdRAE1). MdDUF506 interacts with MdCNR8, positively regulating Al stress tolerance. Taken together, these discoveries offer crucial candidate genes for targeted breeding as well as fresh insights into resistance to Al stress.

期刊论文 2025-06-15 DOI: 10.1111/pce.15659 ISSN: 0140-7791

Composite materials with different contents of silicon-modified pineapple leaf fiber (PALF), calcined oyster shell powder (OSP), and poly(butylene succinate) (PBS) were successfully prepared. Moreover, the flexural performance of the composite materials containing calcined oxazoline (OSP) was obviously enhanced. The addition of silicon-modified PALF contributed to the improvement of the material's thermal stability and affected its water absorption performance. Significant degradation differences were observed in PALF composite materials modified with glycidoxypropyl trimethoxysilane (Glymo) and PBS when adding calcined OSP. Formulations containing calcined OSP and epoxy-type silicon-modified PALF showed better adhesion to the PBS substrate, thereby exhibiting good flexural performance. The flexural strength of the formulation increased by 47% compared to pure PBS. This research accentuates the differences between epoxy-type silicon-modified PALF and PBS when integrated with calcined OSP. Biodegradation experiments demonstrated a notable 38.32% degradation after 105 days of the soil burial period. Furthermore, the study investigated the potential for manufacturing products, including tableware, storage boxes, and bowls, using injection molding techniques.

期刊论文 2025-06-10 DOI: 10.1021/acssuschemeng.5c02699 ISSN: 2168-0485

Because pineapple is an important crop in Vietnam, it is crucial to assess the nutrition status of the pineapple. Although the diagnosis and recommendation integrated system (DRIS) is a reliable approach, finding the right leaf position to diagnose is vital. Therefore, the aim of the current study is to determine suitable leaf positions for creating DRIS norms for macro- and micronutrients in pineapple leaf. Healthy pineapple leaves without pest or disease damages were sampled from 60 pineapple farms and analyzed for N, P, K, Na, Ca, Mg, Cu, Fe, Zn, and Mn concentrations. The results revealed that the critical yield was 13.3 t ha-1 among the 60 farms, dividing into 23 farms as the high-yielding group (>= 13.3 t ha(-1)) and 37 farms as the low-yielding group (< 13.3 t ha(-1)). The concentrations of mineral nutrients (N, P, K, Ca, Mg, Cu and Zn) and pineapple fruit yields in the high-yielding group were greater than those in the low-yielding one. On the other hand, the Na, Fe, and Mn concentrations showed the opposite pattern. Selected leaf positions must possess significantly different nutrient ratios and have more than 14 nutrient ratio pairs between the two yield groups. Therefore, leaf positions from +15 to +19 were selected to create DRIS norms. Nine sets of DRIS norms have been created at leaf +1, +3, +7, +9, +16, +18, +21, +22, and +29 for plant pineapples.

期刊论文 2025-02-01 ISSN: 1310-0351

Apple replant disease is a complex soil syndrome that occurs when the same fields are repeatedly utilized for apple orchard cultivation. It can be caused by various pathogens, and Fusarium solani is the main pathogen. Fusarium solani disrupts the structure and function of the orchard soil ecosystem and inhibits the growth and development of apple trees, significantly impacting the quality and yield of apples. In this study, we conducted a transcriptome comparison between uninoculated apple saplings and those inoculated with F. solani. The differentially expressed genes were mainly enriched in processes such as response to symbiotic fungus. Plant defensins are antimicrobial peptides, but their roles during F. solani infection remain unclear. We performed a genome-wide identification of apple defensin genes and identified 25 genes with the conserved motif of eight cysteine residues. In wild- type apple rootstock inoculated with F. solani, the root surface cells experienced severe damage, and showed significant differences in the total root length, total root projection area, root tips, root forks, and total root surface area compared to the control group. qRT-PCR analysis revealed that MdDEF3 and MdDEF25 were triggered in response to F. solani infection in apples. Subcellular localization showed specific expression of the MdDEF3-YFP and MdDEF25-YFP proteins on the cell membrane. Overexpressing the MdDEF25-YFP fusion gene enhanced resistance against F. solani in apple, providing a new strategy for the future prevention and biological control of apple replant disease.

期刊论文 2025-01-01 DOI: 10.1016/j.jia.2024.03.039 ISSN: 2095-3119

Apples have been constantly damaged in collecting, transporting, and processing, leading research focus on apples' mechanical-structural damage behavior. To research apples' mechanical-structural damage behavior during collision, a dropping collision damage testing device was self-established, with PLC control, data acquisition-processing, in situ high-speed observation. The effect of impact material, drop height, impact orientation on apple deformation and bruise area was investigated with self-established device, considering three typical kinds of apples. The results indicated that apple dropping collision can be divided into two stages: dropping down contact deformation stage and recovering contact deformation stage. Three kinds of apples demonstrate the largest deformation and bruise area when the impact material is steel and acrylic plate. The deformation is similar when apples collide with soil and foam, apples have no bruise area when the impact material is foam. The correlation between apple deformation, bruising area, and drop height was established, reflecting the relationship between drop height and apples' mechanical-structural damage behavior. Yellow Marshal apple deformation is the largest compared to other two kinds of apples under the same collision condition. Red Fuji apple bruise area is the largest compared to other two kinds of apples. The largest bruise area of Yellow Marshal apple and Guoguang apple are in apple transverse, and Red Fuji apple is in apple top. The study can provide basic theoretical and practical guidance for apples postharvest work.

期刊论文 2024-12-01 DOI: 10.1111/jfpe.70011 ISSN: 0145-8876

Carboxymethyl cellulose (CMC) bioplastic shows great promise for sustainable food packaging. This study synthesized zinc oxide nanoparticles (ZnO NPs) from pineapple waste via green synthesis and incorporated them into CMC to develop enhanced nanocomposite films. Key steps included preparing ZnONP powder and formulating ZnONP-CMC (ZCMC) (1.0% w/v) solutions for film fabrication. The nanocomposites were characterized using FTIR, XRD, SEM-EDX, TGA, and DSC to assess structural integrity and thermal stability. Physical properties showed enhancement, including a thickness of 0.17.05 mm, opacity of 17%, moisture content of 52.38%, and water solubility of 64.52%. The mechanical properties also improved significantly, with a tensile strength of 26.30 MPa and elongation at a break of similar to 50%. FTIR and XRD confirmed the successful incorporation of ZnO NPs, which improved the crystallinity and structural integrity of the CMC matrix. Notably, the ZCMC nanocomposite exhibited rapid biodegradation within 9 days under soil conditions, highlighting its potential for reducing environmental impact. In conclusion, adding ZnO NPs to CMC films notably improves their physical, mechanical, and thermal characteristics, rendering them ideal for food packaging. While the mechanical and biodegradation properties are promising for food packaging applications, future research should focus on evaluating the antimicrobial properties and practical applications of the ZCMC films in food preservation.

期刊论文 2024-12-01 DOI: 10.1002/slct.202404773 ISSN: 2365-6549

BACKGROUND: The invasive freshwater snail Pomacea canaliculata is an agricultural pest with a certain level of tolerance to abiotic stress. After the harvest of late rice, the snails usually burrow themselves into the soil surface layers to overwinter and pose a renewed threat to rice production in the following year. Revealing the response of snails to environmental stresses is crucial for developing countermeasures to control their damage and spread. RESULTS: In this study, we conducted a 120-day in situ experiment during the winter to investigate the survival and physiological changes of hibernating snails in 0-5 and 5-10 cm soil depths, aiming to explore their overwintering strategies. Our results showed that 73.61%, 87.50%, and 90.28% of male, female, and juvenile snails survived after hibernation for 120 days in 0-10 cm soil depth, respectively. The differences in survival rates based on sex and size of snails potentially reflect the countermeasures of snails to rapidly reproduce after hibernation. Simultaneously, the hibernating snails exhibited the ability to maintain a certain level of body weight. During this period, the snails increased their antioxidant enzyme activities to cope with oxidative stress, and enhanced their lipid storage. The hibernation survival of snails was not significantly affected by different soil depths, indicating that they have the potential to hibernate into deeper soils. Furthermore, snails were capable of increasing their contents of bound water and glycerol to cope with sudden cold spells during hibernation. CONCLUSION: Our findings emphasize the adaptive changes of P. canaliculata snails overwintering in paddy soils. In future studies, the vulnerabilities of P. canaliculata during hibernation (e.g. shell characteristics, nutrient reserves, and dehydration tolerance, etc.,) should be investigated to develop effective control methods for this period. (c) 2024 Society of Chemical Industry.

期刊论文 2024-11-01 DOI: 10.1002/ps.8327 ISSN: 1526-498X

The root, a key organ for sensing the soil environment, is easily damaged by environmental stresses such as low soil temperature. Although the exact mechanism is unknown, exogenous sucrose can mitigate the oxidative damage to the root caused by low temperatures in the root zone. In this study, we examined how exogenous sucrose affected the transcriptome and physiology of Malus baccata Borkh. seedling roots at sub-low root-zone temperature (LRT). The exogenous sucrose treatment was more effective than other treatments in mitigating LRT stress injury. This was achieved by decreasing reactive oxygen species (O 2 .- and H2O2) 2 O 2 ) and malondialdehyde content, increasing the activities of antioxidant enzymes (SOD, POD, CAT, APX, GR, and MDHAR), increasing AsA and GSH content, and increasing soluble sugar content. Transcriptome analysis revealed that alpha-linolenic acid metabolism, fatty acid biosynthesis, phenylpropane biosynthesis, and glycolysis/gluconeogenesis were the primary areas of enrichment for the differentially expressed genes identified under the LRT treatment. Exogenous sucrose may enhance the tolerance of Malus baccata Borkh. to LRT by regulating the expression of differentially expressed genes ( GST, LOX, SS, PFK, ADH, , and 4CL) ) related to the antioxidant system, carbohydrate metabolism, alpha-linolenic acid metabolism, and phenylpropane biosynthesis pathways. These results offer a foundation for additional investigation into the molecular mechanism underlying the modulation of the root response to low temperature by exogenous sucrose.

期刊论文 2024-11-01 DOI: 10.1016/j.scienta.2024.113474 ISSN: 0304-4238

Plant-parasitic nematodes (PPNs) pose a critical challenge in agriculture, particularly when it comes to managing fruit orchards. To address the potential damage, our study aimed to analyze 110 soil samples from pome-fruit tree rhizospheres to identify PPNs. After transferring the samples to the lab, soil washing and nematode extraction were performed using a modified combination of the sieve and centrifugation method by Jenkins, followed by fixation and transfer to glycerin according to De Grisse's method. The results showed that of the 27 identified species, Amplimerlinius parbati, Pratylenchus estoniensis, Rotylenchus bialaebursus, and R. secondus were new records for Iran. A. parbati was distinguished by between four and five head annuli, large stylet with downward knobs, and annulated tail with hemispherical shape. P. estoniensis was identified by two annuli in the lip region, well-developed empty spermathecal, and striated tail tip. R. bialaebursus possessed a rounded lip region with four annuli, phasmids in between nine and 12 annuli anterior to the anus, and a rounded tail with between six and eight annuli. R. secondus was recognized by conoid and slightly offset labial region without/with faint annulation, stylet pointed and less than 30 mu m, rounded tail and vulva situated at 50-70%. Subsequently, the potential threat of the species to fruit orchards is discussed.

期刊论文 2024-10-01 DOI: 10.1007/s10341-024-01152-2 ISSN: 2948-2623

Plant fibers' wide availability and accessibility are the main causes of the growing interest in sustainable technologies. The two primary factors to consider while concentrating on composite materials are their low weight and highly specific features, as well as their environmental friendliness. Pineapple leaf fiber (PALF) stands out among natural fibers due to its rich cellulose content, cost-effectiveness, eco-friendliness, and good fiber strength. This review provides an intensive assessment of the surface treatment, extraction, characterization, modifications and progress, mechanical properties, and potential applications of PALF-based polymer composites. Classification of natural fibers, synthetic fibers, chemical composition, micro cellulose, nanocellulose, and cellulose-based polymer composite applications have been extensively reviewed and reported. Besides, the reviewed PALF can be extracted into natural fiber cellulose and lignin can be used as reinforcement for the development of polymer biocomposites with desirable properties. Furthermore, this review article is keen to study the biodegradation of natural fibers, lignocellulosic biopolymers, and biocomposites in soil and ocean environments. Through an evaluation of the existing literature, this review provides a detailed summary of PALF-based polymer composite material as suitable for various industrial applications, including energy generation, storage, conversion, and mulching films.

期刊论文 2024-08-01 DOI: 10.3390/separations11080245
  • 首页
  • 1
  • 2
  • 末页
  • 跳转
当前展示1-10条  共14条,2页