This study evaluates dykes stability of bauxite residue storage facility using limit equilibrium (LEM) and finite element methods (FEM), considering diverse construction phases. In LEM, steady state seepage is simulated using piezometric line while factor of safety (FOS) is determined by Morgenstern-Price method using SLOPE/W. In FEM, actual loading rates and time dependent seepage is modelled by coupled stress-pore water pressure analysis in SIGMA/W and dyke stability is assessed by stress analysis in SLOPE/W, referencing SIGMA/W analysis as a baseline model. Both the analysis incorporated suction and volumetric water content functions to determine FOS. FEM predicted pore pressures are validated against in-situ piezometer data. The results highlight that coupled hydro-mechanical analysis offers accurate stability assessment by integrating stress-strain behaviour, pore pressure changes, seepage paths, and dyke displacements with time. It is found that inclusion of unsaturated parameters in Mohr-Coulomb model improved the reliability in FOS predictions.
This study aimed to evaluate the potential of replacing fly ash (FA) with bauxite tailing (BT) slurry for geopolymer synthesis and investigate the long-term leaching behaviour of BT slurry/FA geopolymers (BFGs) for heavy metal immobilisation. The mechanical properties and heavy metal immobilisation efficiency of BFGs were tested, and numerical simulations were conducted to assess their environmental impact as a backfill material. The results showed that the incorporation of 5 Wt.% BT increased the early compressive strength of the geopolymer without any additional treatment. A small quantity of Cu2+ improved the mechanical strength, while excess heavy metals harmed the geopolymer. Heavy metal immobilisation efficiency decreased with increased heavy metal addition and exceeded 99.9% for Pb2+ and Cu2+ when simulating acid rain leachate. The modified Elovich equation described the leaching kinetics of Cu2+ well, and the leaching rate decreased with time. Numerical analysis indicated that Cu2+ leaching from landfill leachate occurred in three phases, with an initial increase followed by a gradual decrease, stabilisation, and diffusion into the surrounding soil layer. This study provides insight into the material's long-term stability and environmental performance, offering a scientific basis for relevant engineering applications.
Despite its vital importance to the contemporary economy, some drawbacks are mainly associated with waste derived from mining activity. This waste consists of tailings that are hydraulically disposed of in large impoundments, the tailings dams. As the dams are enlarged to accommodate higher amounts of materials, the stress states at which the deposited tailings are submitted change. This may be a concern for the stability of such structures once the geotechnical behavior of this material may be complex and challenging to predict, considering the existing approaches. Thus, the present study concerns the mechanical response of bauxite tailings under a wide span of stresses, ranging from 25 kPa to 4000 kPa. One-dimensional compression tests and isotropically drained and undrained triaxial tests were carried out on intact and remolded samples of the bauxite tailings. The after-shearing grain size distribution was characterized via sedimentation analysis. The results have shown a stress-dependency of the critical state friction angle for the intact material, which may be related to fabric alterations derived from structure deterioration and particle breakage. Overall, this research provides valuable insights into the response of structured and de-structured bauxite tailings, which are helpful for future constitutive modeling of such material.