The morphology of sheep wool applied as organic fertilizer biodegraded in the soil was examined. The investigations were conducted in natural conditions for unwashed waste wool, which was rejected during sorting and then chopped into short segments and wool pellets. Different types of wool were mixed with soil and buried in experimental plots. The wool samples were periodically taken and analyzed for one year using Scanning Electron Microscopy (SEM) and Energy-dispersive X-ray Spectroscopy (EDS). During examinations, the changes in the fibers' morphology were observed. It was stated that cut wool and pellet are mechanically damaged, which significantly accelerates wool biodegradation and quickly destroys the whole fiber structure. On the contrary, for undamaged fibers biodegradation occurs slowly, layer by layer, in a predictable sequence. This finding has practical implications for the use of wool as an organic fertilizer, suggesting that the method of preparation can influence its biodegradation rate. (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic). (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic), (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic), (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic). (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic). (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(SEM)(sic)(sic)(sic)(sic)(sic)X(sic)(sic)(sic)(sic)(EDS)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic). (sic)(sic)(sic)(sic)(sic)(sic), (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic). (sic)(sic)(sic), (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic), (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic), (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic). (sic)(sic), (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic), (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic). (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic), (sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic)(sic).
The present study performed classification global aerosols based on particle linear depolarization ratio (PLDR) and single scattering albedo (SSA) provided from AErosol RObotic NETwork (AERONET) Version 3.0 and Level 2.0 inversion products of 171 AERONET sites located in six continents. Current methodology could distinguish effectively between dust and non-dust aerosols using PLDR and SSA. These selected sites include dominant aerosol types such as, pure dust (PD), dust dominated mixture (DDM), pollution dominated mixture (PDM), very weakly absorbing (VWA), strongly absorbing (SA), moderately absorbing(MA), and weakly absorbing (WA). Biomass-burning aerosols which are associated with black carbon are assigned as combinations of WA, MA and SA. The key important findings show the sites in the Northern African region are predominantly influenced by PD, while south Asian sites are characterized by DDM as well as mixture of dust and pollution aerosols. Urban and industrialized regions located in Europe and North American sites are characterized by VWA, WA, and MA aerosols. Tropical regions, including South America, South-east-Asia and southern African sites which prone to forest and biomass-burning, are dominated by SA aerosols. The study further examined the impacts by radiative forcing for different aerosol types. Among the aerosol types, SA and VWA contribute with the highest (30.14 +/- 8.04 Wm-2) and lowest (7.83 +/- 4.12 Wm-2) atmospheric forcing, respectively. Consequently, atmospheric heating rates are found to be highest by SA (0.85 K day-1) and lowest by VWA aerosols (0.22 Kday-1). The current study provides a comprehensive report on aerosol optical, micro-physical and radiative properties for different aerosol types across six continents.
Permafrost thawing is a critical climate tipping point, with catastrophic consequences. Existing stabilization methods rely on refrigerant-based systems, such as thermosyphons and active refrigeration, which are capital-intensive, energy-demanding, or increasingly ineffective in warming climates. Most infrastructure built on permafrost requires continuous heat removal from the foundation as the underlying permafrost becomes progressively unstable. To address these challenges, we demonstrate a fully biomass-derived cooling geotextile that can effectively mitigate permafrost thawing through scalable nanoprocessing via a roll-to-roll fabrication (1.3 mmin-1). The cooling geotextile features a hierarchical three-layer design: a strong woven biomass scaffold, a permeable nonwoven fiber network, and an optimized porous coating layer with micro- and nano-structures. When anchored to bare ground, it extracts heat to the cold sky, enhances albedo from similar to 30% to 96.3%, and establishes a thermal barrier between soil and air. Engineered for Arctic durability, it withstands strong winds, extreme cold, and freeze-thaw cycles, exceeding the American National Engineering Handbook requirements (tensile strength 1,682 kg; tear strength 191 kg; puncture strength 61 kg). Field tests in West Lafayette, IN (40 degrees 25 ' 21 '' N, 86 degrees 55 ' 12 '' W) reveal up to 25 degrees C soil cooling under 500 Wm-2 irradiance. Its lightweight (0.8 kgm-2) and rollable attributes enable scalable and fast localized deployment. Simulations predict up to 12 degrees C surface cooling during Arctic summer (2020-2050), preventing up to 40,000 km2 of permafrost from thawing. Completely derived from biomass, cooling geotextile ensures a low carbon footprint (0.7 kgm-2), positioning itself as a sustainable solution for reinforcing Arctic coastline, reconstructing thawing landscape, and restoring the environment.
The recent large reduction in anthropogenic aerosol emissions across China has improved China's air quality but has potential consequences for climate forcing. This sharp reduction in anthropogenic emissions has occurred against a background influenced by changing regional biomass burning emissions over a similar period of time. Here, we use the UK Earth System Model (UKESM) to estimate aerosol instantaneous radiative forcing (IRF) due to changes in emissions of aerosols and precursors from biomass burning and anthropogenic sources (separately and in combination) over 2008-2016, with a focus on China and regions downwind. We also separately quantify the IRF due to changes in anthropogenic aerosol emissions inside China (CHN) and the Rest Of the World (ROW). Reductions in Chinese anthropogenic emissions of BC, SO2 and OC contributed -0.30 +/- 0.01, +1.00 +/- 0.04, and +0.05 +/- 0.01 W m-2, respectively to IRF over China, accounting for similar to 97% of the total local anthropogenic aerosol IRF. These emission changes contributed a remote regional IRF of 0.22 +/- 0.04 W m-2 over the North Pacific Ocean. The reduction in SO2 emissions from China contributed a global IRF of equal magnitude to that from SO2 emissions from ROW (similar to 0.08 W m-2). Changes in global biomass burning emissions contributed 0.03 W m-2 (equivalent to over 20% of the magnitude of anthropogenic aerosol IRF), enhancing the global anthropogenic aerosol IRF, whereas they partly offset the anthropogenic IRF over China. Meanwhile, biomass burning emissions dominated the total IRF (around 98%) over the Arctic.
Abandoned farmlands are increasing due to socio-economic changes and land marginalization, and they require sustainable land management practices. Biocrusts are a common cover on the topsoil of abandoned farmlands and play an important role in improving soil stability and erosion resistance. The critical functions of biocrusts are known to mostly rely on their biofilaments and extracellular polymeric substances (EPS), but how these components act at microscopic scale is still unknown, while rheological methods are able to provide new insights into biocrust microstructural stability at particle scale. Here, bare soil and two representative types of biocrusts (cyanobacterial and moss crusts) developed on sandy (Ustipsamments) and sandy loam (Haplustepts) soils in abandoned farmlands in the northern Chinese Loess Plateau were collected at a sampling depth of 2 cm. Changes in the rheological properties of the biocrusts were analyzed with respect to their biofilament network and EPS contents to provide possible explanations. The rheological results showed that compared with bare soil, storage and loss moduli were decreased by the biocrusts on sandy soil, but they were increased by the biocrusts on sandy loam soil. Other rheological parameters tau max, gamma L, gamma YP, and Iz of biocrusts on both soils were significantly higher than those of bare soil, showing higher viscoelasticity. And the moss crusts had about 10 times higher rheological property values than the cyanobacterial crusts. Analysis from SEM images showed that the moss crusts had higher biofilament network parameters than the cyanobacterial crusts, including nodes, crosslink density, branches, branching ratio and mesh index, and biofilament density, indicating that the biofilament network structure in the moss crusts was more compact and complex in contrast to the cyanobacterial crusts. Additionally, EPS content of the moss crusts was higher than that of the cyanobacterial crusts on both soils. Overall, the crosslink density, biofilament density, and EPS content of the biocrusts were significantly and positively correlated with their gamma YP and Iz. The interaction between crosslink density and biofilament density contributed 73.2 % of gamma YP, and that between crosslink density and EPS content contributed 84.0 % of Iz. Our findings highlight the biocrusts-induced changes of abandoned farmland soil rheological properties in drylands, and the importance of biocrust biofilament network and EPS in maintaining abandoned farmland soil microstructural stability to resist soil water/wind erosion and degradation, providing a new perspective for sustainable management of abandoned farmlands.
In recent years, excessive accumulations of iron (Fe), manganese (Mn), and nitrogen (N) have been observed in the groundwater of agricultural regions, particularly in flood irrigation areas. Nevertheless, the causes of this phenomenon and the associated hydrobiogeochemical processes remain elusive. This study demonstrated that redox fluctuations instigated by flood irrigation triggered a synergistic interaction between the N cycles and the activation of Fe and Mn oxides, thereby resulting in elevated concentrations of Fe, Mn, and N simultaneously. Static experiments revealed that the properties of the topsoil exerted a profound influence on the N induced release of Fe and Mn. The black soil (TFe: 1.5-2.3 times, Mn(II): 1.1-1.5 times, nitrate: 1.3-1.4 times) had greater release potential than meadow and dark brown soils due to higher electron donors/acceptors and substrates. Dynamic column experiments further elucidated that the wet-dry cycles induced by agricultural cultivation regulated the release process through the formation of zonal redox gradients and the structuring of microbial community. Organic nitrogen mineralization, chemolithotrophic nitrification, and Feammox/Mnammox were identified as the primary mechanisms responsible for the reductive dissolution of Fe-Mn oxides. On the other hand, autotrophic denitrification, with nitrate serving as the electron acceptor, constituted the main process for the reoxidation of Fe and Mn. Furthermore, the agricultural activities exerted a significant impact on the nitrate attenuation process, ultimately resulting in the recurrence of TFe (black soil: 1.5-6.3 times) and nitrate (black soil: 1.4-1.6 times) pollution during the phase after harvesting of rice (days 40-45) in saturated zone. The findings of this study not only deepened the understanding of the intricate interactions and coupled cycles between primary geochemical compositions and anthropogenic pollutants, but also provided a scientific foundation for the effective management and prevention of groundwater pollution stemming from agricultural cultivation processes.
Biogrouting has been proposed for improving mechanical properties of soils and rocks, whose performance greatly depends on the location of biocement at pore-scale. To enhance the performance of biogrouting, many strategies were proposed, including the addition of assistants, controlling curing moisture degree, and flocculation of bacteria. Clay is one such assistant which has been proven to be effective, with an assumption of increasing active biocement, i.e. those located between soil particles. In this work, we employed microfluidics to directly observe whether clay minerals can certainly control the location of precipitates and how they function. First of all, the capacity of bentonite and kaolin for adsorbing bacteria were investigated. Then, the location of CaCO3 crystals with and without clay minerals were visually observed using microfluidics. Pore-filling ratios and CaCO3 ratios, which are closely related to permeability and strength of biocemented soils, were quantitatively analyzed from collected images. Finally, the effects of bentonite and kaolin and their dosages on the location of biocement were comprehensively discussed. The results demonstrated that the performance of bentonite and kaolin on adsorbing bacteria and regulating biocement location is distinct due to differences in the morphologies of clays. These findings can help us to improve biogrouting performance on soil stabilization and propose new strategies in various practical applications, such as CO2 sequestration, heavy metal remediation, and oil recovery enhancement, all with a foundational understanding of their mechanisms.
Researchers have tried hard to study the toxic effects of single pollutants like certain antibiotics and nanoplastic particles on plants. But we still know little about how these pollutants interact when they're together in the environment, and what combined toxic effects they have on plants. This study assessed the toxic effects of polystyrene nanoplastics (PS-NPs) and ciprofloxacin (CIP), both individually and in combination, on soybean (Glycine max L.) seedlings by various concentration gradients treatments of PS-NPs (0, 10, 100 mg/L) and CIP (0, 10 mg/L). The results indicated that high concentrations of PS-NPs significantly impeded soybean seedling growth, as evidenced by reductions in root length, plant height, and leaf area. CIP predominantly affected the physiological functions of leaves, resulting in a decrease in chlorophyll content. The combined exposure demonstrated synergistic effects, further intensifying the adverse impacts on the growth and physiological functions of soybean seedlings. Metabolomic analyses indicated that single and combined exposures markedly altered the metabolite expression profiles in soybean leaves, particularly related to amino acid and antioxidant defense metabolic pathways. These results indicate the comprehensive effects of NPs with antibiotics on plants and provide novel insights into toxic mechanisms.
Permafrost peatlands store substantial amounts of carbon, though persistence of this soil carbon is unknown in a rapidly warming Arctic. To investigate potential carbon production from soils at different stages of permafrost degradation, we incubated soils from a palsa mire in northern Fennoscandia. Three soil horizons from four thaw stages were included within the transect, beginning with intact permafrost and ending in an established post-thaw wetland. Samples were incubated anaerobically for a year at different temperatures (4 degrees C, 20 degrees C) with the aim of investigating drivers of carbon degradation rates. Additional subsamples from the intact palsa were incubated under aerobic conditions, or inoculated with thermokarst pond water to further explore thaw processes on soil. Total CO2 and CH4 produced ranged from 9,910 +/- 626 (from the surface peat of the established post-thaw wetland, at 20 degrees C) to 1,921 +/- 126 mu g C g-1 DW (from the intermediate thaw stage of the palsa permafrost, incubated at 20 degrees C). The CH4 temperature sensitivity was markedly higher in permafrost soils, with Q 10 s more than four times larger than that of the active layer (active layer average: 1.7 +/- 1.6, permafrost average: 8.4 +/- 5). Methanogenesis generally increased with thaw, but the largest increase of cumulative methane production was between the wetland thaw stages (from 633 to 2,880 mu g CH4-C g-1 DW), where graminoids colonized the post-thaw environment. This uptick in CH4 production 30+ years after post-thaw wetland establishment implies that increases in CH4 production are largely due to vegetation inputs rather than thawed permafrost carbon contributions.
The mitigation of seismic soil liquefaction in sand with fine content presents a challenge, demanding efficient strategies. This research explores the efficacy of Microbial-Induced Partial Saturation (MIPS) as a biogeotechnical technique to improve the liquefaction resistance of sandy soils with plastic fines. By leveraging the natural metabolic processes of indigenous microorganisms, this method introduces biogenic gas production within the soil matrix, effectively reducing its degree of saturation. This partial desaturation alters the soil's response to cyclic loading, aiming to mitigate the risk of liquefaction under dynamic loading conditions. Experimental results from a series of undrained strain-controlled cyclic shear tests reveal that even a modest reduction in saturation significantly enhances the soil's stability against seismic-induced liquefaction. The investigation extends to analyzing the effectiveness of the MIPS treatment in sands with low-plasticity clay content, offering insights into the interaction between microbial activity, soil texture, and liquefaction potential. Results show that while plasticity plays a key role in improving the cyclic response of soils, the influence of MIPS treatment remains noteworthy, even in sand with plastic fines. Additionally, a modified predictive formulation is introduced, incorporating a calibrated parameter to account for the influence of fines' plasticity on excess pore pressure generation.