共检索到 8

Ginger is a significant ethnobotanical and pharmacological crop consisting of potential bioactive constituents responsible for their nutraceutical value, they can have anti-inflammatory, antiobesity, antidiabetic, antinausea, antimicrobial, pain alleviation, antitumor, antioxidant and protective effects on respiratory disease, and agerelated disease. Ginger possesses a substantial value, but its production and general quality are greatly harmed by various biotic and abiotic stressors, to which it is highly susceptible. Fungi are the most damaging disease-causing agents, one of the devastating fungal pathogens in ginger is Fusarium spp., a soil and seed-borne pathogen resulting in poor production, poor quality, and decreased economic returns to the farmers. It infects ginger in every stage of development and each plant part even during post-harvest storage. This review emphasizes a comprehensive understanding of the nutraceutical value of ginger compounds, and Fusarium disease in ginger with its pathogenicity. Moreover, this review elaborates on an improvement of ginger yield by the management of the Fusarium pathogen through the biological and biotechnological approach.

期刊论文 2025-08-01 DOI: 10.1016/j.micpath.2025.107597 ISSN: 0882-4010

Background: The olive stone, a primary by-product of olive oil extraction, is mainly composed of a lignified shell and inner seed. It represents a substantial portion of the olive industry's biomass waste, contributing over 40 Mt annually. While typically regarded as waste, olive stones contain a variety of nutrients and bioactive compounds like lipids, proteins, phenolic compounds, and minerals found in the seed, as well as fibers in the shell. These elements hold significant value across multiple sectors, including food, energy, and agriculture. These phenolic compounds and nutrients provide notable antioxidant, anti-inflammatory, chemopreventive, and antimicrobial effects, supporting health and disease prevention. Scope and approach: This review explores the sustainable utilization of olive stone by-products, highlighting their potential to contribute to human health and environmental sustainability. It discusses the practical applications of olive stones in various domains, from functional ingredients in food products and pharmaceuticals to renewable energy sources and soil-enhancing agricultural inputs. Key findings and conclusions: Olive stones, particularly olive seeds, are rich in dietary fiber (47.6 %), lipids (30.4 %), proteins (13.5 %), and phenolic compounds (8.10 %), especially n & uuml;zhenide, n & uuml;zhenide 11-methyl oleoside and methoxyn & uuml;zhenide, and demonstrate a range of health-promoting properties. Additionally, they are shown to benefit metabolic health by combating disorders such as diabetes, hyperlipidemia, obesity, and car- diovascular and neurodegenerative diseases while also protecting organ functions like those of the liver and kidneys. The review underscores the promise of olive stone by-products as a sustainable, health-benefiting resource in circular economy practices within the olive oil industry.

期刊论文 2025-06-01 DOI: 10.1016/j.jfca.2025.107495 ISSN: 0889-1575

Fungal diseases caused by Fusarium spp. significantly threaten food security and sustainable agriculture. One of the traditional strategies for eradicating Fusarium spp. incidents is the use of chemical and synthetic fungicides. The excessive use of these products generates environmental damage and has negative effects on crop yield. It puts plants in stressful conditions, kills the natural soil microbiome, and makes phytopathogenic fungi resistant. Finally, it also causes health problems in farmers. This drives the search for and selection of natural alternatives, such as bio-fungicides. Among natural products, algae and cyanobacteria are promising sources of antifungal bio-compounds. These organisms can synthesize different bioactive molecules, such as fatty acids, phenolic acids, and some volatile organic compounds with antifungal activity, which can damage the fungal cell membrane that surrounds the hyphae and spores, either by solubilization or by making them porous and disrupted. Research in this area is still developing, but significant progress has been made in the identification of the compounds with potential for controlling this important pathogen. Therefore, this review focuses on the knowledge about the mechanisms of action of the fatty acids from macroalgae, microalgae, and cyanobacteria as principal biomolecules with antifungal activity, as well as on the benefits and challenges of applying these natural metabolites against Fusarium spp. to achieve sustainable agriculture.

期刊论文 2025-02-01 DOI: 10.3390/microorganisms13020439

Conventional food packaging films pose significant environmental hazards. Consequently, there has been a burgeoning interest in biopolymers, leading to numerous studies to develop biodegradable and bioactive films suitable for the food packaging industry. In this study, we present a novel environmentally-friendly chitosan-based film incorporating berberine, a bioactive compound abundant in various plants. Before blending with a chitosan solution, berberine chloride's water solubility was enhanced using 2-hydroxypropyl-beta-cyclodextrin. Fourier transform infrared spectroscopy confirmed the interactions between berberine and chitosan. Scanning electron microscopy and atomic force microscopy analyses demonstrated the even distribution and good compatibility of berberine within the chitosan film. By blending berberine with chitosan, the obtained biopolymer film exhibited improved mechanical properties compared to the control film. Differential scanning calorimetry analysis showed that berberine incorporation reduced the glass transition temperature from 89 degrees C to 68 degrees C. The film also blocked the UV light almost 100%. The addition of berberine decreased the water vapour permeability of the chitosan film while increasing the swelling ratio and water solubility. The berberine-incorporated chitosan film exhibited an antioxidant capacity of 33.7% as measured by the 2,2 diphenyl-1-picrylhydrazyl assay, which was significantly higher than that of the chitosan film, which has 5.92%. The film also demonstrated antimicrobial activity with a reduction in B. cereus and S. typhimurium growth compared to the control. Additionally, the degradation study revealed that the film degraded by 82.5% within ten days under soil. Our findings suggest that the chitosan-berberine film holds promise for applications in the food packaging industry.

期刊论文 2025-01-01 DOI: 10.1007/s11694-024-02967-z ISSN: 2193-4126

In this study, starch (ST), chitosan (CH), spider silk (SW), and their hybrid composite bioplastics were fabricated and examined for physicochemical and mechanical properties. The essential oils (EOs) of Rosmarinus officinalis were encapsulated to enhance their biological application. The prepared composite films were characterized using various spectroscopic techniques such as XRD, SEM, GCMS-, UV-VIS, TGA, and FTIR spectroscopy. The antimicrobial activity of the prepared film was tested against S. aureus bacterial and C. albican fungal strains which showed a greater zone of inhibition for the composite film encapsulated with EOs. The biodegradability of the synthesized film was evaluated for 60 days in soil under laboratory conditions. The composite film containing spider web and essential oil significantly improved mechanical properties. The physicochemical results, such as moisture, solubility, swelling, transmittance, opacity, and water vapor permeability, of the prepared bioplastic were comparable with those of the control plastic. The EO-based film had greater antioxidant activity against DPPH, hydrogen peroxide, and phosphomolybdenum assays, with an inhibition range of 60-70 %. The addition of spider web and essential oil to the chitosan/ starch film significantly increased the shelf life of injera and tomatoes for 7 and 10 days, respectively for the EO-based film. The biodegradability of the synthesized film has shown a great reduction in the weight and growth of microorganisms. In general, the CH/ST/SW and CH/ST/ SW/EOs composite films have greater mechanical, biological, physicochemical, and potential improvement of food shelf life applied as either coating or packaging material.

期刊论文 2024-12-01 DOI: 10.1016/j.afres.2024.100526 ISSN: 2772-5022

Plant-parasitic nematodes (PPN) pose a significant threat to agricultural productivity by causing extensive damage to various crops worldwide. Their complex life cycle and ability to persist in soils make nematode management difficult. Chemical control strategies are emerging as effective but often result in environmental and ecological risks. Biocontrol agents offer a promising alternative with the desired level of reduction in nematode populations without harming non-target organisms. Among the nematode antagonists, Streptomyces spp. is an effective candidate with their ability to produce secondary metabolites that exhibit potent nematicidal properties. Streptomyces avermitilis is the one species that has been completely exploited for nematode and insect management. This review highlights the role of Streptomyces spp. other than S. avermitilis in phytonematode management. Few Streptomyces spp. such as S. yatensis, S. pactum, S. rochei, S. rubrogriseus, S. lincolnensis, S. hygroscopicus, S. antibioticus strain M7, S. albogriseolus ND41 and S. fimicarius D153 are reported to have nematode control potential. Arenimycin, carboxamycin, fervenulin, hygromycin, and lincomycin are some of the Streptomyces-derived compounds that proved to have nematicide potential. Streptomyces spp. also acts as an elicitor of plant defense against nematode intruders. They evinced endophytic potential, plant growth promotion mechanism, compatible nature with other antagonists, and safe to non-target organisms. This current review also highlights the direct and indirect mechanisms by which they control nematodes, another beneficial role in plants, and strategies to upgrade them as commercial products in future thrust areas.

期刊论文 2024-11-01 DOI: 10.1016/j.pmpp.2024.102465 ISSN: 0885-5765

Bracken fern (Pteridium aquilinum (L.) Kuhn) is ubiquitous and acts as a cosmopolitan weed in pastures and similar environments. Despite its historical uses, it presents risks due to toxicity. This study, conducted in the second half of 2023, aimed to assess the environmental and health hazards of P. aquilinum, primarily focusing on its carcinogenic compound, ptaquiloside. The literature was comprehensively reviewed using diverse databases, including PubMed, Web of Science, Scopus, and Google Scholar. Information was synthesized from original research articles, meta-analyses, systematic reviews, and relevant animal studies. Animals grazing on bracken fern face annual production losses due to toxin exposure. The substantial impact on biodiversity, animal health, and human well-being arises from the presence of ptaquiloside and related compounds in milk, meat, and water, along with the increasing global prevalence of P. aquilinum and its swift colonization in acidic soil and fire-damaged areas. The objectives were to identify major bioactive compounds and explore their effects at molecular, cellular, pathological, and population levels. Various cooking techniques were considered to mitigate toxin exposure, although complete elimination remains unattainable. Therefore, the findings emphasize the need for cautious consumption. In conclusion, continued research is necessary to better understand and manage its environmental and health implications.

期刊论文 2024-01-01 DOI: 10.3390/plants13010018 ISSN: 2223-7747

The harsh climatic conditions of deserts may lead to unique adaptations of microbes, which could serve as potential sources of new metabolites to cope with environmental stresses. However, the mechanisms governing the environmental adaptability and antimicrobial activity of desert Streptomyces remain inadequate, especially in extreme temperature differences, drought conditions, and strong radiation. Here, we isolated a Streptomyces strain from rocks in the Kumtagh Desert in Northwest China and tested its antibacterial activity, resistance to UV-C irradiation, and tolerance to hydrogen peroxide (H2O2). The whole-genome sequencing was carried out to study the mechanisms underlying physiological characteristics and ecological adaptation from a genomic perspective. This strain has a growth inhibitory effect against a variety of indicator bacteria, and the highest antibacterial activity recorded was against Bacillus cereus. Moreover, strain D23 can withstand UV-C irradiation up to 100 J/m(2) (D10 = 80 J/m(2)) and tolerate stress up to 70 mM H2O2. The genome prediction of strain D23 revealed the mechanisms associated with its adaptation to extreme environmental and stressful conditions. In total, 33 biosynthetic gene clusters (BGCs) were predicted based on anti-SMASH. Gene annotation found that S. huasconensis D23 contains several genes and proteins associated with the biosynthesis of factors required to cope with environmental stress of temperature, UV radiation, and osmotic pressure. The results of this study provide information about the genome and BGCs of the strain S. huasconensis D23. The experimental results combined with the genome sequencing data show that antimicrobial activity and stress resistance of S. huasconensis D23 was due to the rich and diverse secondary metabolite production capacity and the induction of stress-responsive genes. The environmental adaptability and antimicrobial activity information presented here will be valuable for subsequent work regarding the isolation of bioactive compounds and provide insight into the ecological adaptation mechanism of microbes to extreme desert environments.

期刊论文 2022-11-01 DOI: http://dx.doi.org/10.3390/microorganisms10122408
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-8条  共8条,1页