共检索到 5

Biological soil crusts (BSCs; biocrusts) are well developed in drylands, which are crucial to the stability and resilience of dryland ecosystems. In the southeastern Gurbantunggut Desert, a typical sandy desert in the middle part of central Asia, engineering development has an increasing negative impact on ecosystems. Fortunately, ecological restoration measures are being implemented, but the exact effect on soil quality is still unclear. In artificial sand-fixing sites on reshaped dunes along the west-east desert road, a total of 80 quadrats (1 m x 1 m) of reed checkerboards after the implementation of sand-fixing measures for 10 years were investigated to determine the BSC development status and soil properties. The algal and lichen crusts accounted for 48.75 % and 26.25 % of the total quadrat number, respectively, indicating an obvious recovery effect of BSC (only 25 % for bare sand). The developmental level of BSC gradually increased from the top to the bottom of the dunes (Li 0 -> Li 6),which was consistent with the distribution pattern of BSCs on natural dunes. Compared with bare sand, the soil organic carbon (13.85 % and 23.07 % increases), total nitrogen (12.55 % and 23.95 % increases), total potassium (9.30 % and 8.24 % increases), and available nitrogen (23.97 % and 61.41 % increases) contents of algal and lichen crusts were significantly increased, and lichen crusts had markedly higher increase effect than algal crusts. The BSC development markedly reduced soil pH (0.49 % and 0.50 % decreased) and increased electrical conductivity(11.99 % and 10.68 % increases), resulting in improved soil microenvironment. Soil properties showed significant linear relationships with BSC development level, and an optimal fitting (R2 = 0.770 or 0.780) was detected for the soil fertility index. Based on the soil property matrix, the bare sands, algal, and lichen crusts were markedly separated along the first axis in the PCA biplot, which once again confirmed the significant positive effect of BSC recovery on soil fertility improvement. Consequently, in the early stage of sand-fixation (e.g., < = 10 years) by reed checkerboards on the damaged desert surface, BSC recovery can well promote and predict soil fertility in this area. The results provide a reliable theoretical basis for the restoration technology and scientific management of degraded sandy desert ecosystems.

期刊论文 2025-09-01 DOI: 10.1016/j.gecco.2025.e03634

Land degradation can cause food insecurities and can damage ecosystems. This study highlights the potential of cyanobacteria (Anabaena variabilis, Spirulina platensis, Scytonema javanicum, and Nostoc commune), along with bacteria (Bacillus sp. SSAU-2), and their consortia to form biological soil crust, restoring soil properties and promoting plant growth. The efficiency of soil improvement was characterized by physiochemical parameters such as phosphate solubilization, %TOC, pH, and salinity. Scanning electron microscopy and a pot experiment were utilized to observe the morphological and soil improvement studies. Bacterial inoculation resulted in significant improvements in soil fertility, such as exopolysaccharide, organic carbon, organic matter, phosphorus content, and total soil porosity. Cyanobacteria consortia were more effective than monocultures at improving soil fertility and promoting barley plant development. The potential value of selected cyanobacteria and bacterial consortia as a useful tool for the restoration of degraded land is demonstrated experimentally by this study.

期刊论文 2025-04-01 DOI: 10.1007/s10811-024-03437-1 ISSN: 0921-8971

The impact of global climate change and human-induced nitrogen (N) deposition on winter weather patterns will have consequences for soil N cycling and greenhouse gas emissions in temperate deserts. Biological soil crusts (referred to as biocrusts) are crucial communities in soil and significant sources of nitrous oxide (N2O) emission in desert ecosystems and are sensitive to environmental changes. The contribution of bacteria and fungi to N2O production in drylands has been acknowledged. However, the effect of changes in snow cover and N deposition on the N2O production of different microbial groups of microorganisms is not yet clear. In this study, we examine the responses of fungi and bacteria mediated pathways involved in soil N2O production from biocrusts to longterm snow cover manipulation and N addition experiments in the Gurbantunggut Desert. These soils were incubated and subjected to biocide treatments (such as cycloheximide and streptomycin, and fungal and bacterial inhibitors), after which rates of potential nitrification and N2O production were measured. Compared with controls, snow removal treatments from bare sand, lichen crust and moss crust reduced background rates of N2O production by 29.41 %, 26.21 % and 20.49 %, respectively; N2O production rates were 1.53-fold higher in bare sand, 1.38-fold higher in lichen crust, and 1.56-fold higher in moss crust after N addition. The addition of streptomycin significantly reduced the potential nitrification rates of bare sand and biocrusts, indicating that bacteria may be important sources of NO3- production in biocrusts rather than fungi. Conversely, fungi were main sources of N2O production in biocrusts. Additionally, fungi also played a major role in N2O production in biocrusts after snow cover manipulation and N addition. Both snow cover manipulation and N addition treatment indirectly affected the N2O production in biocrusts by considerably affecting the content of substrate N and the abundance of microbial groups. Our research suggests that fungi are main contributors for denitrification in biocrusts, and that snow cover changes (removal snow and double snow) and N addition alter the contribution of biotic pathways responsible for N cycling.

期刊论文 2025-01-01 DOI: 10.1016/j.apsoil.2024.105766 ISSN: 0929-1393

Biocrusts play an essential role in maintaining ecosystem stability, which is common in arid and semi-arid areas. Although there have been some previous studies on the stoichiometry of biocrust subsoil in grazing systems, further research is needed to assess the effects of varying grazing intensities. Four grazing gradients were established to investigate the change mechanism of biocrust subsoil stoichiometry under grazing conditions, considering its seasonal response. These findings revealed that biocrusts' coverage and their chlorophyll content showed a parabolic trend of increasing and then decreasing with the increase in grazing intensity. At the same time, their standard response thresholds to grazing intensity ranged from 2.67 to 5.33 sheep/ha. Moreover, the premise that the biocrust is damaged by grazing trampling has become a consensus; our study found that the biocrust still played an important role, although its structure was destroyed because of its greenness (BG) increased. The influence of grazing intensity on the biocrust subsoil stoichiometry is unquestionable; in addition, they are influenced by a combination of vegetation (10% and 19%) and environmental influences (6% and 18%). Furthermore, it was observed that these changes did not compensate for the reproduction and development of biocrusts in grazing-induced trampling damage. In this study, the integrated consideration of biocrusts into the grazing system fully affirmed its essential role. Additionally, it clarified the pathways and effect of grazing on biocrusts subsoil stoichiometry, providing a new perspective and reference for developing grazing strategy on the Loess Plateau.

期刊论文 2024-11-01 DOI: 10.1002/ldr.5280 ISSN: 1085-3278

The relationship between soil temperature and its variations with different types of land cover are critical to understanding the effects of climate warming on ecohydrological processes in frozen soil regions such as the Qinghai-Tibet Plateau (QTP) of China. Biological soil crusts (biocrusts), which cover approximately 40% of the open soil surface in frozen soil regions, exert great impacts on soil temperatures. However, little attention has been given to the potential effects of biocrusts on the temperature characteristics, dynamics and freezing duration of soil in frozen soil regions. To provide more insight into this issue, an automatic system was used to monitor soil temperatures and dynamics at depths of 5, 30, 50 and 100 cm beneath bare soil and two types of biocrustal soils (soils covered with two types of biocrusts) on the QTP of China. The results showed that biocrusts play an important role in controlling the dynamics of soil temperatures. Biocrusts cause a 0.6-1 degrees C decrease in the mean annual temperature of soils down to a depth of 100 cm. The extent of the decrease in soil temperature was dependent on biocrust type, and dark biocrust showed a greater reduction in soil temperature than light biocrust. In addition, reductions in soil temperatures of biocrusts mainly occurred in daytimes of the thawing period, and this prolonged the freezing duration in the top 100 cm by approximately 10-20 days. The results of this study indicate that biocrusts maintain lower temperatures in the thawing period and slow the thawing of frozen soil in the spring, which helps to maintain the stability of the frozen soil. This information may aid understanding of the function of biocrusts in the frozen soil regions under global warming conditions.

期刊论文 2022-03-01 DOI: 10.1016/j.geoderma.2021.115655 ISSN: 0016-7061
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-5条  共5条,1页