Ongoing climate change threatens the biodiversity of glacier-fed river ecosystems worldwide through shifts in water availability and timing, temperature, chemistry, and channel stability. However, tropical glacier-fed rivers have received little attention compared to those in temperate and Arctic biomes, despite their unique biodiversity potentially responding differently due to additional stress from higher altitude locations thus lower oxygen availability, diurnal freeze-thaw cycles, and annual monsoon rainfall disturbances. However, tropical glacier-fed rivers have received little attention compared to those in temperate and Arctic biomes, despite their unique biodiversity potentially responding differently due to additional stress from higher altitude locations thus lower oxygen availability, diurnal freeze-thaw cycles, and annual monsoon rainfall disturbances. This study quantified aquatic biodiversity responses to decreasing glacier cover in the Cordillera Blanca range of the Peruvian Andes. Ten rivers were studied along a gradient of decreasing glacier cover in the Par & oacute;n, Huaytapallana, and Llanganuco basins, with a specific focus on macroinvertebrates and physicochemical parameters in both the dry and wet seasons. We found higher temperatures, more stable and lower turbidity rivers as glacier cover decreased, which were related significantly to higher local diversity and lower beta-diversity. Analysis of similarity revealed significant differences in the macroinvertebrate community among rivers with high, medium, or low glacier cover, illustrating turnover from specialists to generalists as glacial influence decreased. Redundancy analysis demonstrated that there were more species found to prefer stable beds and water temperatures in medium and low glacier cover in a catchment rivers. However, certain taxa in groups such as Paraheptagyia, Orthocladiinae, Anomalocosmoecus, and Limonia may be adapted to high glacial influence habitats and at risk of glacier retreat. Although species composition was different to other biomes, the Cordillera Blanca rivers showed similar benthic macroinvertebrate biodiversity responses to glacier retreat, supporting the hypothesis that climate change will have predictable effects on aquatic biodiversity in mountain ranges worldwide. Ongoing climate change threatens glacier-fed river ecosystems globally, impacting biodiversity through shifts in water availability, temperature, and chemistry. Tropical glacier-fed rivers, like those in the Peruvian Andes, are understudied despite unique stressors. This study examined biodiversity in 10 rivers along a glacier cover gradient. Results showed higher temperatures and stability as glacier cover decreased, correlating with increased local diversity. Analysis revealed turnover in macroinvertebrate communities with reduced glacial influence. Certain taxa may be vulnerable to glacier retreat. Despite differences from other regions, findings support predictable biodiversity responses to climate change in mountainous areas.image
2024-07-01 Web of ScienceThe seasonal movement of the zero-degree isotherm across the Southern Ocean and Antarctic Peninsula drives major changes in the physical and biological processes around maritime Antarctica. These include spatial and temporal shifts in precipitation phase, snow accumulation and melt, thawing and freezing of the active layer of the permafrost, glacier mass balance variations, sea ice mass balance and changes in physiological processes of biodiversity. Here, we characterize the historical seasonal southward movement of the monthly near-surface zero-degree isotherm latitude (ZIL), and quantify the velocity of migration in the context of climate change using climate reanalyses and projections. From 1957 to 2020, the ZIL exhibited a significant southward shift of 16.8 km decade(-1) around Antarctica and of 23.8 km decade(-1) in the Antarctic Peninsula, substantially faster than the global mean velocity of temperature change of 4.2 km decade(-1), with only a small fraction being attributed to the Southern Annular Mode (SAM). CMIP6 models reproduce the trends observed from 1957 to 2014 and predict a further southward migration around Antarctica of 24 +/- 12 km decade(-1) and 50 +/- 19 km decade(-1) under the SSP2-4.5 and SSP5-8.5 scenarios, respectively. The southward migration of the ZIL is expected to have major impacts on the cryosphere, especially on the precipitation phase, snow accumulation and in peripheral glaciers of the Antarctic Peninsula, with more uncertain changes on permafrost, ice sheets and shelves, and sea ice. Longer periods of temperatures above 0 degrees C threshold will extend active biological periods in terrestrial ecosystems and will reduce the extent of oceanic ice cover, changing phenologies as well as areas of productivity in marine ecosystems, especially those located on the sea ice edge.
2024-02-20 Web of ScienceAll ecosystems face ecological challenges in this century. Therefore, it is becoming increasingly important to understand the ecology and degree of local adaptation of functionally important Arctic-alpine biomes by looking at the most diverse taxon of metazoans: the Arthropoda. This is the first study to utilize metabarcoding in the Alpine tundra, providing insights into the effects of micro-environmental parameters on alpha- and beta-diversity of arthropods in such unique environments. To characterize arthropod diversity, pitfall traps were set at three middle-alpine sampling sites in the Scandinavian mountain range in Norway during the snow-free season in 2015. A metabarcoding approach was then used to determine the small-scale biodiversity patterns of arthropods in the Alpine tundra. All DNA was extracted directly from the preservative EtOH from 27 pitfall traps. In order to identify the controlling environmental conditions, all sampling locations were equipped with automatic data loggers for permanent measurement of the microenvironmental conditions. The variables measured were: air temperature [degrees C] at 15 cm height, soil temperature [degrees C] at 15 cm depth, and soil moisture [vol.%] at 15 cm depth. A total of 233 Arthropoda OTUs were identified. The number of unique OTUs found per sampling location (ridge, south-facing slope, and depression) was generally higher than the OTUs shared between the sampling locations, demonstrating that niche features greatly impact arthropod community structure. Our findings emphasize the fine-scale heterogeneity of arctic-alpine ecosystems and provide evidence for trait-based and niche-driven adaptation. The spatial and temporal differences in arthropod diversity were best explained by soil moisture and soil temperature at the respective locations. Furthermore, our results show that arthropod diversity is underestimated in alpine-tundra ecosystems using classical approaches and highlight the importance of integrating long-term functional environmental data and modern taxonomic techniques into biodiversity research to expand our ecological understanding of fine- and meso-scale biogeographical patterns. Our study examines the alpha- and beta-diversity of arthropods in the Arctic-alpine biomes of the Scandes using environmental DNA (eDNA)/metabarcoding. We found that micro-climatological parameters such as air/soil temperature and soil moisture significantly influence the arthropod community structure, highlighting the fine-scale heterogeneity of these ecosystems. Our study emphasizes the importance of integrating long-term functional environmental data and modern taxonomic techniques to accurately assess arthropod diversity and broaden our understanding of biogeographical patterns in alpine-tundra ecosystems.image
2024-02-01 Web of ScienceClimate change is transforming winter environmental conditions rapidly. Shifts in snow regimes and freeze/thaw cycles that are unique to the harsh winter season can strongly influence ecological processes and biodiversity patterns of mammals and birds. However, the role of the winter environment in structuring a species richness pattern is generally downplayed, especially in temperate regions. Here we developed a suite of winter habitat indices at 500 m spatial resolution by fusing MODIS snow products and NASA MEaSUREs daily freeze/thaw records from passive microwave sensors and tested how these indices could improve the explanation of species richness patterns across China. We found that the winter habitat indices provided unique and mutually complementary environmental information compared to the commonly used Dynamic Habitat Indices (DHIs). Winter habitat indices significantly increased the explanatory power for species richness of all mammal and bird groups. Particularly, winter habitat indices contributed more to the explanation of bird species than mammals. Regarding the independent contribution, winter season length made the largest contributions to the explained variance of winter birds (30%), resident birds (27%), and mammals (18%), while the frequency of snow-free frozen ground contributed the most to the explanation of species richness for summer birds (23%). Our research provides new insights into the interpretation of broad-scale species diversity, which has great implications for biodiversity assessment and conservation.
2022-02-01 Web of ScienceSimple Summary Seafloor biodiversity provides a key ecosystem service, as an efficient route for carbon to be removed from the atmosphere to become buried (long-term) in marine sediment. Protecting near intact ecosystems, particularly those that are hotspots of biodiversity, with high numbers of unique species (endemics), is increasingly being recognised as the best route to protect existing blue carbon. This study measured globally significant stocks of blue carbon held within both rocky (17.5 tonnes carbon km(-2)) and soft (4.1 t C km(-2)) substrata shallow (20 m) seafloor communities along the Antarctic Peninsula. Along the 7998 km of seasonally ice-free shoreline, 59% of known dive sites were classified as rocky and 12% as soft substratum. This gave estimates of 253k t C in animals and plants found at 20 m depth, with a potential sequestration of 4.5k t C year(-1). More carbon was stored in assemblages with greater functional groups. Of the Antarctic Peninsula shore, 54% is still permanently ice covered, and so blue carbon ecosystem services are expected to more than double with continued climate warming. As one of the few increasing negative feedbacks against climate change, protecting seafloor communities around the Antarctic is expected to help tackle both the biodiversity and climate crises. The importance of cold-water blue carbon as biological carbon pumps that sequester carbon into ocean sediments is now being realised. Most polar blue carbon research to date has focussed on deep water, yet the highest productivity is in the shallows. This study measured the functional biodiversity and carbon standing stock accumulated by shallow-water (<25 m) benthic assemblages on both hard and soft substrata on the Antarctic Peninsula (WAP, 67 degrees S). Soft substrata benthic assemblages (391 +/- 499 t C km(-2)) contained 60% less carbon than hard substrata benthic assemblages (648 +/- 909). In situ observations of substrata by SCUBA divers provided estimates of 59% hard (4700 km) and 12% soft (960 km) substrata on seasonally ice-free shores of the Antarctic Peninsula, giving an estimate of 253,000 t C at 20 m depth, with a sequestration potential of ~4500 t C year(-1). Currently, 54% of the shoreline is permanently ice covered and so climate-mediated ice loss along the Peninsula is predicted to more than double this carbon sink. The steep fjordic shorelines make these assemblages a globally important pathway to sequestration, acting as one of the few negative (mitigating) feedbacks to climate change. The proposed WAP marine protected area could safeguard this ecosystem service, helping to tackle the climate and biodiversity crises.
2022-02-01 Web of ScienceMicroorganisms in cold ecosystems play a key ecological role in their natural habitats. Since these ecosystems are especially sensitive to climate changes, as indicated by the worldwide retreat of glaciers and ice sheets as well as permafrost thawing, an understanding of the role and potential of microbial life in these habitats has become crucial. Emerging technologies have added significantly to our knowledge of abundance, functional activity, and lifestyles of microbial communities in cold environments. The current knowledge of microbial ecology in glacial habitats and permafrost, the most studied habitats of the cryosphere, is reported in this review.
2019-03-01 Web of ScienceThe forest-tundra interface is the world's largest ecotone, and is globally important due to its biodiversity, climatic sensitivity, and natural resources. The ecological communities which characterize this ecotone, and which provide local and global ecosystem services, are affected by environmental variation at multiple scales. We explored correlations between environmental variables and macroinvertebrate and soil prokaryote communities in the forest-tundra ecotone of the Yukon, Canada. We found that each tussock tundra site possessed a distinct community of macroinvertebrates and prokaryotes, and therefore represented a unique contribution to regional biodiversity. Prokaryote diversity increased with active layer depth, which could be an effect of temperature, or could be evidence of a species-area effect. Prokaryote diversity decreased with lichen cover, which could be due to antimicrobial properties of lichen. The macroinvertebrate community composition was affected by proximity to a human disturbance, the Dempster Highway. Both macroinvertebrate and prokaryote community compositions changed along the latitudinal transect, as the biome transitioned from taiga to tundra. We also found that the abundance of carnivores relative to herbivores decreased with latitude, which adds to recent evidence that predation decreases with latitude. Our survey yielded new insights about how macro- and microorganisms vary together and independently in relation to environmental variables at multiple scales in a forest-tundra ecotone.
2018-08-01 Web of ScienceAims: This paper focuses on quantifying the distribution patterns of plant communities along the permafrost thaw depth gradient, in order to develop a framework for predicting the response of vegetation characteristics in cold high latitude ecosystems to permafrost degradation as a result of climate warming. Study area: Great Hing'an Mountains of northeastern China. Methods: Thirty plots were selected in a west slope region of the Great Hing'an Mountain Valleys to study the relationship between the depth of the active layer of permafrost and characteristics of plant communities. Results: The distribution of plant communities strongly correlated with the permafrost thaw depth. With increasing depth of the active layer, important species showed an obvious transition and plant strategies shifted gradually from helophilous to hygrophilous to mesophilous. Both biodiversity and the total biomass of understory vegetation decreased significantly along this gradient. Conclusions: The response of the vegetation characteristics varied considerably with the depth of the active layer throughout the permafrost degradation. Our results show implications for vegetation in the face of climate change as rising temperatures directly affect permafrost, and in many areas the depth of the active layer is increasing.
2018-01-01 Web of ScienceHigh-altitude ecosystems shelter important reserves of biodiversity, water provision and soil organic carbon (SOC) stocks. Climate change, agricultural encroachment, overgrazing, and mining activities are endangering ecosystems sustainability, particularly in the high-Andean Puna. Increasing food demands in a region with limited agricultural land calls for agricultural intensification. Ecological intensification of agriculture is a framework for increasing agricultural productivity by fostering supporting and regulating ecosystem services (ES) while reducing negative environmental impacts. In this review we examine how agriculture use and disturb the provision of key ES in this ecoregion - food, wool and fiber provision, soil fertility, nutrient cycling, soil carbon sequestration, water provision and regulation, genetic resources, pest and disease control, pollination regulation and microclimate regulation. We also propose a set of technologies, practices and policies to preserve (or restore) the provision of these key ES: long fallowing, soil amendments, conservation tillage, rotational grazing, grassland ecological restoration, conservation of agrobiodiversity, modern irrigation and water harvesting, plant breeding, climate change mitigation schemes and payment for ecosystem services, and adapted traditional technologies. (C) 2016 Elsevier B.V. All rights reserved.
2017-01-02 Web of ScienceArthropods form a major part of the terrestrial species diversity in the Arctic, and are particularly sensitive to temporal changes in the abiotic environment. It is assumed that most Arctic arthropods are habitat generalists and that their diversity patterns exhibit low spatial variation. The empirical basis for this assumption, however, is weak. We examine the degree of spatial variation in species diversity and assemblage structure among five habitat types at two sites of similar abiotic conditions and plant species composition in southwest Greenland, using standardized field collection methods for spiders, beetles and butterflies. We employed non-metric multidimensional scaling, species richness estimation, community dissimilarity and indicator species analysis to test for local (within site)- and regional (between site)-scale differences in arthropod communities. To identify specific drivers of local arthropod assemblages, we used a combination of ordination techniques and linear regression. Species richness and the species pool differed between sites, with the latter indicating high species turnover. Local-scale assemblage patterns were related to soil moisture and temperature. We conclude that Arctic arthropod species assemblages vary substantially over short distances due to local soil characteristics, while regional variation in the species pool is likely influenced by geographic barriers, i.e., inland ice sheet, glaciers, mountains and large water bodies. In order to predict future changes to Arctic arthropod diversity, further efforts are needed to disentangle contemporary drivers of diversity at multiple spatial scales.
2016-12-01 Web of Science