The UK sixth carbon budget has recommended domestic biomass supply should increase to meet growing demand, planting a minimum of 30,000 hectares of perennial energy crops a year by 2035, with a view to establishing 700,000 hectares by 2050 to meet the requirements of the balanced net zero pathway. Miscanthus is a key biomass crop to scale up domestic biomass production in the United Kingdom. A cohesive land management strategy, based on robust evidence, will be required to ensure upscaling of miscanthus cultivation maximizes the environmental and economic benefits and minimizes undesirable consequences. This review examines research into available land areas, environmental impacts, barriers to uptake, and the challenges, benefits, and trade-offs required to upscale miscanthus production on arable land and grassland in the United Kingdom. Expansion of perennial biomass crops has been considered best restricted to marginal land, less suited to food production. The review identifies a trade-off between avoiding competition with food production and a risk of encroaching on areas containing high-biodiversity or high-carbon stocks, such as semi-natural grasslands. If areas of land suitable for food production are needed to produce the biomass required for emission reduction, the review indicates there are multiple strategies for miscanthus to complement long-term food security rather than compete with it. On arable land, a miscanthus rotation with a cycle length of 10-20 years can be employed as fallow period for fields experiencing yield decline, soil fatigue, or persistent weed problems. On improved grassland areas, miscanthus presents an option for diversification, flood mitigation, and water quality improvement. Strategies need to be developed to integrate miscanthus into farming systems in a way that is profitable, sensitive to local demand, climate, and geography, and complements rather than competes with food production by increasing overall farm profitability and resilience.
Resource depletion and climate changes due to human activities and excessive burning of fossil fuels are the driving forces to explore alternatives clean energy resources. The objective of this study was to investigate the potential of potato peel waste (PPW) at various temperatures T15 (15 degrees C), T25 (25 degrees C), and T35 (35 degrees C) in anaerobic digestion (AD) for biogas generation. The highest biogas and CH4 production (117 mL VS-g and 74 mL VS-g) was observed by applying 35 degrees C (T35) as compared with T25 (65 mL VS-g and 22 mL VS-g) on day 6. Changes in microbial diversity associated with different temperatures were also explored. The Shannon index of bacterial community was not significantly affected, while there was a positive correlation of archaeal community with the applied temperatures. The bacterial phyla Firmicutes were strongly affected by T35 (39%), whereas Lactobacillus was the dominant genera at T15 (27%). Methanobacterium and Methanosarcina, as archaeal genera, dominated in T35 temperature reactors. In brief, at T35, Proteiniphilum and Methanosarcina were positively correlated with volatile fatty acids (VFAs) concentration. Spearman correlation revealed dynamic interspecies interactions among bacterial and archaeal genera; facilitating the AD system. This study revealed that temperature variations can enhance the microbial community of the AD system, leading to increased biogas production. It is recommended for optimizing the AD of food wastes.
Environmental impact studies of forest bioenergy systems usually account for CO2 emissions and removals and identify the so-called carbon debt of bioenergy through comparison with a reference system. This approach is based on a simple sum of fluxes and does not consider any direct physical impact or climate system response. Other recent applications go one step further and elaborate impulse response functions (IRFs) and subsequent metrics for biogenic CO2 emissions that are compatible with the life-cycle assessment (LCA) methodology. However, a thorough discussion about the role of the different metrics in the interpretation of the climate impacts of forest bioenergy systems is still missing. In this work, we assess a single LCA dataset of selected bioenergy systems using different emission metrics based on cumulative CO2 emissions, radiative forcing and global surface temperature. We consider both absolute and normalized metrics for single pulses and sustained emissions. The key challenges are the choice of end point (emissions, concentration, radiative forcing, change in temperature, etc), the type of measure (instantaneous or time-integrated) and the treatment of time. Bioenergy systems usually perform better than fossil counterparts if assessed with instantaneous metrics, including global surface temperature change, and in some cases can give a net global cooling effect in the short term. The analysis of sustained, or continuous emissions, also shows that impacts from bioenergy systems are generally reversible, while those from fossil fuels are permanent. As shown in this study, the metric choice can have a large influence on the results. The dominant role traditionally assigned to cumulative metrics in LCA studies and climate impact accounting schemes should therefore be reconsidered, because such metrics can fail to capture important time dependences unique to the biomass system under analysis (to which instantaneous metrics are well suited).