共检索到 103

Researchers have tried hard to study the toxic effects of single pollutants like certain antibiotics and nanoplastic particles on plants. But we still know little about how these pollutants interact when they're together in the environment, and what combined toxic effects they have on plants. This study assessed the toxic effects of polystyrene nanoplastics (PS-NPs) and ciprofloxacin (CIP), both individually and in combination, on soybean (Glycine max L.) seedlings by various concentration gradients treatments of PS-NPs (0, 10, 100 mg/L) and CIP (0, 10 mg/L). The results indicated that high concentrations of PS-NPs significantly impeded soybean seedling growth, as evidenced by reductions in root length, plant height, and leaf area. CIP predominantly affected the physiological functions of leaves, resulting in a decrease in chlorophyll content. The combined exposure demonstrated synergistic effects, further intensifying the adverse impacts on the growth and physiological functions of soybean seedlings. Metabolomic analyses indicated that single and combined exposures markedly altered the metabolite expression profiles in soybean leaves, particularly related to amino acid and antioxidant defense metabolic pathways. These results indicate the comprehensive effects of NPs with antibiotics on plants and provide novel insights into toxic mechanisms.

期刊论文 2025-09-15 DOI: 10.1016/j.envpol.2025.126644 ISSN: 0269-7491

Ciprofloxacin (CIP) is an antibiotic used in both human and veterinary medicine. Because it is only partially metabolized, it has been found in sewage sludge, manure, and agricultural soils. Therefore, due to the high persistence and low mobility of CIP in soil, we aimed to evaluate its long-term effect on Enchytraeus crypticus. Three multigenerational and one transgenerational test were performed according to OECD 220 guidelines (2016) on sandy clay soil. The concentrations tested were 0.1, 1.0, 10.0, 100.0, 1000.0 and 5000.0 mg kg- 1 dry soil. For F1, statistical analysis showed differences between the control and all concentrations tested, but no differences among the concentrations. For F2, there was a difference between control and 10 mg Kg -1 and for 10.0 mg Kg -1 compared to 0.1, 1.0 and 5000.0 mg Kg -1. For F3, no statistical difference was observed between any of the concentrations. When comparing the generations among themselves, there were significant differences between F1 and F2 and F1 and F3 for all concentrations. For the transgenerational test, there was no statistical difference between the control and the concentrations tested, nor among the concentrations. We verified a negative effect of CIP on the reproduction of E. crypticus for the first generation, which could be related to oxidative stress, DNA damage and clay content. We also verified that the organisms could develop a tolerance to CIP and that the effects of high clay content could outweigh the effects of CIP in long-term exposure. Due to the high persistence and low mobility of CIP on soil, it may affect other organisms and promote antibiotic resistant genes (ARGs) regardless of E. crypticus tolerance. Therefore, we strongly recommend further studies focusing on long-term effects on different organisms, with a molecular approach, and in different soil types.

期刊论文 2025-08-01 DOI: 10.1016/j.apsoil.2025.106171 ISSN: 0929-1393

Miscanthus is a promising perennial lignocellulosic crop for biomass production. To avoid competing with arable land used for food crops to promote carbon neutrality, cultivating Miscanthus on marginal land, especially in saline soils in China, is a recommended strategy. However, the adaptability of Miscanthus species in saline soil remains largely unknown. In this study, a total of 354 genotypes, including Miscanthus sinensis, Miscanthus floridulus, Miscanthus sacchariflorus, Miscanthus lutarioriparius and interspecific species hybrids derived from M. sinensis and M. lutarioriparius, were evaluated under different planting times (May and August), salinity levels (low and moderate) and pest damage assessment by Helicoverpa armigera in the Yellow River Delta (YRD), in China. The significant effects of planting time on the adaptability of Miscanthus were observed. Planting in May in the YRD, Miscanthus had a lower establishment survival rate (28.76%) and overwintering rate (72.31%), but a dry weight higher than that of planting in August. In contrast, planting in August in the YRD had a very high establishment survival rate (91.14%) and overwintering rate (80.65%), which indicated August was the optimal month for planting Miscanthus in the YRD, while May could be suitable for screening salinity tolerance in Miscanthus. In addition, using the overall adaptability score calculated by establishment survival, overwintering ability, key agronomic traits and pest damage assessments to evaluate all genotypes in this study indicated that the adaptability of M. lutarioriparius was superior to other species. However, M. lutarioriparius is more sensitive to pest damage than others. Furthermore, interspecific hybrids in Miscanthus exhibited outstanding biomass production and adaptability in this region, indicating that creating hybrids would be the best breeding strategy for marginal lands. These results provide an important theoretical basis for the development of Miscanthus in saline soil in the YRD, China.

期刊论文 2025-07-01 DOI: 10.1111/jac.70083 ISSN: 0931-2250

Arsenic contamination poses a significant threat to agricultural productivity and food security, especially in Cicer arietinum L. (chickpea). This study evaluates the potential of silicon nanoparticles (SiNPs) to mitigate arsenic stress in C. arietinum (Noor 2022). The experiment was conducted at The Islamia University of Bahawalpur using a randomized complete block design (RCBD) with a factorial arrangement and three replications. A pot experiment was conducted using seven treatments comprising various concentrations of SiNPs applied alone or combined with arsenic [T0 (control, no SiNPs), T1 (3.5% SiNPs), T2 (7% SiNPs), T3 (10.5% SiNPs), T4 (3.5% SiNPs + 30 ppm Ar), T5 (7% SiNPs + 30 ppm Ar), and T6 (10.5% SiNPs + 30 ppm Ar)]. SiNPs were applied as foliar sprays in three splits from the second to fourth weeks after sowing. Morphological, physiological, and biochemical parameters were assessed, including chlorophyll content, total soluble proteins, proline, and antioxidant enzyme activities. The results demonstrated that SiNPs significantly enhanced stress tolerance in chickpea plants. At 10.5% SiNPs, chlorophyll content increased by 35%, carotenoids by 42%, and proline by 68% compared to arsenic-stressed plants without SiNPs, indicating improved photosynthetic efficiency and osmotic adjustment. Antioxidant enzyme activities, including peroxidase (POD), superoxide dismutase (SOD), and ascorbate peroxidase (APX), increased by 50%, 47%, and 53%, respectively, mitigating oxidative damage. Soluble sugars and phenolic content also rose by 28% and 32%, respectively, under 10.5% SiNPs. However, when combined with arsenic, some antagonistic effects were observed, with a slight decrease in chlorophyll and antioxidant activity compared to SiNPs alone. These findings suggest that SiNPs are a promising tool for improving crop resilience in arsenic-contaminated soils, offering insights into sustainable agricultural practices. Further research is warranted to explore long-term impacts and optimize application strategies.

期刊论文 2025-06-16 DOI: 10.1007/s12633-025-03369-6 ISSN: 1876-990X

Drought (D) and chromium (Cr) stress co-occur in agricultural fields due to the accumulation of excessive Cr in soils from industrial pollution and increasing frequency of water scarcity. Carrageenan (Car), a compound extracted from red seaweed, is an emerging biostimulant with multifaceted roles in plants. This study investigated the role of exogenous Car in mediating tolerance to D-, Cr-, and DCr-stress in wheat seedlings, aiming to elucidate the potential of Car in mitigating toxicity and promoting plant resilience. Wheat seedlings exposed to DCr-stress exhibited reduced growth and biomass production, along with elevated levels of reactive oxygen, carbonyl, and nitrogen species. Moreover, D-stress exacerbated Cr-toxicity, as demonstrated by principal component analysis (PCA), which showed a strong positive correlation between DCr-stress and stress marker parameters. This suggests that DCr-stress resulted in higher Cr uptake and increased oxidative damage compared to individual D-or Cr-stress, making DCr-stress more detrimental than either stress applied alone. However, Car priming ameliorated the toxic effects of DCr-stress and promoted the growth performance of DCr-stressed wheat seedlings. In PCA, the positive correlation of D + Car, Cr + Car, and DCr + Car treatments with growth and plant defense-related parameters suggests that Car-mediated improvement in stress tolerance can be attributed to reduced accumulation of toxic Cr, increased levels of total free amino acids and soluble sugars, enhanced antioxidant enzyme activity, elevated non-enzymatic antioxidant levels, higher phenolic and flavonoid content, and improved metal chelation and detoxification. Our results indicated Car is a potential and cost-effective biostimulant for managing D-, Cr-, or DCr-stress in wheat.

期刊论文 2025-06-01 DOI: 10.1016/j.plaphy.2025.109781 ISSN: 0981-9428

Integration of breeding innovations and epigenetic modifications offers the potential to boost productivity and promote sustainable agricultural practices, particularly in tomato production, which accounts for 16 % of global vegetable production. They are susceptible to various stress factors, Both abiotic (light, temperature, water, humidity, nutrients) and biotic (pests, diseases), which can impact fruit quality and reduce yield quantity by 50-70 %leading to food insecurity and economic losses. Climatic factors impact the traditional farming of tomatoes in the open field; innovative technologies aim to tackle the adverse effects of both abiotic and biotic stress factors. It highlights advancements in crop productivity and stress tolerance, including increased phytochemicals biosynthesis, improved water use efficiency, and soil salinity tolerance. However, challenges like photooxidative damage and downregulation of anthocyanin biosynthetic genes persist. This review provides highlights of promising technologies to mitigate the impact of stress factors on open field tomato production, highlighting both qualitative and quantitative losses. Besides sustainable systematic solutions, such as agroforestry systems, the advantages of using beneficial microbial endophytes, nanomaterials, and exogenous phytohormones in agriculture are discussed.

期刊论文 2025-06-01 DOI: 10.1016/j.jafr.2025.101825 ISSN: 2666-1543

Balamuthia mandrillaris is an environmentally derived, free-living amoeba that causes fatal meningoencephalitis. We previously isolated B. mandrillaris from soil in the Aomori Prefecture and attempted to culture the cell-free amoeba using liquid medium; however, this was difficult to achieve because of contamination of the medium with endogenous bacteria. The aim of this study was to determine the presence of endogenous bacteria in environmentally derived B. mandrillaris and identify bacteria. Two new environmentally derived B. mandrillaris strains were isolated from soil samples collected throughout Japan. Environmentally derived B. mandrillaris was cultured under nutrient-free conditions for 60 days, and the induced cysts contained large amounts of viable bacteria. The sequence of the endophytic bacteria revealed that the genus Chitinophaga was common between the two strains of B. mandrillaris. The opportunistic pathogens Inquilinus and Brevundimonas were also detected. All of these bacteria were pigment-producing species. Bacterial pigment production helps protect organisms from extremes of heat and cold, increases the virulence of pathogenic strains, and protects organisms from protein and DNA damage caused by UV light and ionizing radiation. This suggests that B. mandrillaris preserving bacteria in a viable state for a long time under severe conditions with no nutrition may be the ability of the bacteria to produce pigments.

期刊论文 2025-06-01 DOI: 10.1007/s00436-025-08505-0 ISSN: 0932-0113

The pervasive occurrence of combined metal and antibiotic pollution (CMAP) in agricultural soils is increasingly being recognized as a novel threat to ecosystems. However, the toxicity variations of CMAP compared to single pollution and the mechanisms underlying these changes remain poorly understood. Herein in this study, the toxicities of copper (Cu)/erythromycin (ERY) and lead (Pb)/norfloxacin (NOR) to earthworms (Eisenia fetida) were investigated. These results indicated that a single exposure to ERY and NOR at environmental concentrations had negligible effects on physiological processes. Combined Cu/ERY exposure induced more significant oxidative stress, disrupted energy metabolism, and caused cellular damage than Cu alone, as indicated by altered antioxidant enzyme activities, malondialdehyde and adenosine triphosphate content, elevated reactive oxygen species levels, and apoptosis rates in coelomocytes. Conversely, these adverse effects were mitigated by Pb/NOR exposure compared to Pb treatment alone. Further analysis of the gut microbiota revealed that Cu/Pb-tolerant Bacillus spp. play a critical mediating role in the contrasting toxicity profiles. ERY reduced the abundance of Bacillus spp., diminishing their ability to secrete soluble phosphate to immobilize Cu in the gut and leading to increased Cu absorption and toxicity. NOR enriches Bacillus spp. in the gut, facilitating Pb immobilization and reducing Pb bioavailability and toxicity. The contrast toxicity profile revealed the response of the gut microbiota taxa is the primary determinant of the variation in CMAP toxicity. These findings advance our understanding of the impact of CMAP on soil organisms and highlight the need for comprehensive ecological risk assessments to inform regulatory strategies.

期刊论文 2025-06-01 DOI: 10.1016/j.envpol.2025.126166 ISSN: 0269-7491

Sugar maple, an economically and ecologically important tree in the northern hardwood forest, has experienced regeneration failure that in the Northeast portion of the range has been variously attributed to soil acidification and resultant changes in soil chemistry, impacts of climate change, and effects of species composition. In a 5-year study spanning a latitudinal gradient in the state of New Hampshire, we examined evidence for these three hypotheses to explain sugar maple regeneration patterns. Overall, sugar maple seedling survival was highest in the two sites with lower sugar maple abundance. Alternatively, the two other sites with greater than 50% sugar maple relative dominance shared the following outcomes: higher seed production per area, greater foliar pest damage, lower seedling survival, lower sapling density, and higher canopy maple mortality, while the sites with lower dominance of maple had opposite outcomes. Based on field data and a common garden experiment, conspecific impacts on seedling survival were related to foliar pests and fungal pathogens rather than through soil feedbacks. These results lend support to other studies encouraging promotion of stand tree diversity and avoidance of monocultures.

期刊论文 2025-06-01 DOI: 10.1139/cjfr-2024-0314 ISSN: 0045-5067

Hordeum jubatum L. is a perennial herb with high ornamental value and strong stress tolerance. Nitrogen deposition and cold stress are key environmental factors that affect stability of ecosystems in cold regions of northeast China. These factors significantly affect plant growth and development. Arbuscular mycorrhizal fungi (AMF) are symbiotic soil fungi that can increase plant resistance and growth. However, research on impacts of nitrogen deposition and cold stress on roots of H. jubatum-AM symbionts remains limited. Root biomass (dry and fresh weight), architecture (length, surface area, volume, forks, number of fourth-order roots, and root fractal dimension), and ultrastructure of H. jubatum were assessed, both in the presence and absence of AMF, under conditions of nitrogen deposition and cold stress. Cold stress inhibited all indicators of root architecture and disrupted root ultrastructure, with greater inhibition shown in the N2 (NH4+/NO3- = 1:1) treatment under cold stress, indicating nitrogen deposition increased sensitivity of H. jubatum to cold stress. Inoculation with AMF significantly reduced damage caused by nitrogen deposition and cold stress on H. jubatum roots compared with the non-inoculation treatment. Our results demonstrate different effects of the interaction of nitrogen deposition and cold stress versus single stress (nitrogen deposition or cold stress) on plant root development and provide a scientific basis for the use of mycorrhizal technology to improve resistance and productivity of cold-tolerant plants in cold regions under stress conditions.

期刊论文 2025-05-26 DOI: 10.1111/plb.70048 ISSN: 1435-8603
  • 首页
  • 1
  • 2
  • 3
  • 4
  • 5
  • 末页
  • 跳转
当前展示1-10条  共103条,11页