Black carbon (BC) mixed with non-BC components strongly absorbs visible light and leads to uncertainty in assessing the absorption enhancement (Eabs) and thus radiative forcing. Traditional Single-Particle Soot Photometer (SP2) combined with the leading-edge only fitting (the only-SP2 method) derives BC's mixing states through Mie scattering calculations. However, errors exist in retrieved optical diameter (Dopt) and MR due to the assumption of the ideal spherical core-shell structure and the selection of the calculation parameters like density and refractive index (RI) of the components. Here, we employed a custom-developed tandem CPMA-SP2 system, which classifies fixed-mass BC to characterize the mixing state, then compared with the only-SP2 method in quantifying the mixing state and Eabs. The field measurements show that the SP2 demonstrates variability in assessing the mixing state of BC in different aging states. The thickly-coated particles with small core approaching the internally mixed state are more sensitive to the change of calculated RI. The Dopt decreases with the RI increasing, indicating that this method accurately measures both Dopt and Eabs when a reasonable refractive index is selected for calculation. However, for thinly-coated particles with moderate or large core, this method results in significant deviations in the computed Eabs (errors up to 15 %). These deviations may be caused by the various shapes of BC and systematic errors. Our results provide valuable insights into the accuracy of the SP2-retrieved Dopt and MR based on Mie calculations and highlight the importance of employing advanced techniques for further assessment of BC's mixing state.
Large-scale wildfires are essential sources of black carbon (BC) and brown carbon (BrC), affecting aerosol-induced radiative forcing. This study investigated the impact of two wildfire plumes (Plume 1 and 2) transported to Moscow on the optical properties of BC and BrC during August 2022. During the wildfires, the total light absorption at 370 nm (b(abs_370nm)) increased 2.3-3.4 times relative to background (17.30 +/- 13.98 Mm(-)(1)), and the BrC contribution to total absorption increased from 14 % to 42-48 %. BrC was further partitioned into primary (BrCPri) and secondary (BrCSec) components. Biomass burning accounted for similar to 83-90 % of BrCPri during the wildfires. The b(abs_370nm) of BrCPri increased 5.6 times in Plume 1 and 11.5 times in Plume 2, due to the higher prevalence of peat combustion in Plume 2. b(abs_370nm) of BrCSec increased 8.3-9.6 times, driven by aqueous-phase processing, as evidenced by strong correlations between aerosol liquid water content and b(abs_370nm) of BrCSec. Daytime b(abs_370nm) of BrCSec increased 7.6 times in Plume 1 but only 3.6 times in Plume 2, due to more extensive photobleaching, as indicated by negative correlations with oxidant concentrations and longer transport times. The radiative forcing of BrCPri relative to BC increased 1.8 times in Plume 1 and Plume 2. In contrast, this increase for BrCSec was 3.4 times in Plume 1 but only 2.3 times in Plume 2, due to differences in chemical processes, which may result in higher uncertainty in its radiative forcing. Future work should prioritize elucidating both the emissions and atmospheric processes to better quantify wildfire-derived BrC and its radiative forcing.
The critical role of light-absorbing aerosol black carbon (BC) in modifying the Earth's atmosphere and climate system warrants detailed characterization of its microphysical properties. The present study examines the BC microphysical properties (size distributions and mixing state) and their impact on the light-absorption characteristics over a semi-urban tropical coastal location in Southern Peninsular India. The measurements of refractory BC (rBC) properties, carried out using the single particle soot photometer during 2018-2021, covering four distinct air mass conditions (Marine, Continental, Mixed-1, and Mixed-2), were used for this purpose. These were supported by measurements of non-refractory submicron particulate matter (NR-PM1) mass loadings and the core-shell Mie theory model for BC-containing particles. The results suggested that the BC particles exhibited varying sizes (mass median diameters from 0.181 +/- 0.079 mu m to 0.202 +/- 0.064 mu m) and relative coating thicknesses (RCT) (1.3-1.6) under distinct air mass conditions. These characteristics reflected varying source/sink strengths, aging processes of BC, and potential condensable coating material. The aerosol system during the Marine air mass period has lower BC (similar to 0.67 +/- 0.57 mu g m(-3)) and NR-PM1 (12.06 +/- 10.81 mu g m(-3)) mass concentrations, and the lowest RCT on BC (similar to 1.34 +/- 0.14). However, the other periods with continental influence depicted significant coatings on BC (mean RCT >1.5). The coatings on BC particles exhibited daytime enhancement, driven by photochemically produced condensable material, a contrasting diurnal pattern to that of other BC properties. Interestingly, the RCT on BC increased and/or remained invariant with increasing relative humidity (RH) until RH 85 %), indicating the potential role of secondary organics as coatings. The changes in the BC mixing state resulted in a significant alteration to its light-absorption properties. The mean light-absorption enhancement of BC (compared to uncoated BC) ranged from 1.36 +/- 0.14 for the Marine air mass periods to 1.58 +/- 0.15 for the Continental air mass periods, whereas the overall mass absorption cross-sections of BC varied between 7.91 +/- 0.91 to 9.03 +/- 0.84 m(2)/g at 550 nm. The key implication of this study is that changes to the BC mixing state, caused by multiple underlying processes unique to tropical atmospheric conditions, can lead to a significant enhancement in its light-absorption characteristics, which can lead to a notable increase in the positive radiative forcing of BC.
Aerosols over the Tibetan Plateau (TP) strongly influence regional climate and hydrological cycles. Here we investigate the size-resolved microphysical and optical properties of aerosols in an urban area of the northern TP using a tandem system of a differential mobility analyzer, a condensation particle counter, and a single particle soot photometer. Under the 2021 summer conditions, the average particle number size distribution follows a lognormal pattern, peaking at similar to 70 nm. Refractory black carbon (rBC) aerosols constitute 17.7% of the total particle population in the 100-750 nm mobility diameter (D-mob) range, with their proportion rising to over 50% for D-mob > 500 nm. Most rBC particles are externally mixed, while only 12.2% are thickly coated with non-refractory materials. Externally mixed rBC particles show strong non-sphericity, with a dynamic shape factor increasing from 1.8 at 115 nm to 2.8 at 750 nm, consistent with aggregate structures. In contrast, thickly coated rBC particles are nearly spherical, with coating thickness increasing with size. The total rBC mass estimated from size-resolved measurements closely matches bulk rBC mass directly measured. rBC-free particles exhibit slight non-sphericity, with shape factor positively correlated with refractive index, likely due to dust contributions. Bulk scattering coefficients derived from size-resolved data match those estimated under the well-mixed spherical assumption. However, the later scheme-lacking observational constraints on morphology and mixing state-overestimates absorption by over a factor of three, thereby underestimating the single-scattering albedo. These results provide key constraints for improving aerosol radiative forcing estimates and advancing understanding of aerosol-climate interactions over the TP.
The Himalayan glacier valleys are encountering escalating environmental challenges. One of the contributing factors is thought to be the rising amounts of light-absorbing carbonaceous aerosols, particularly brown carbon (BrC) and black carbon (BC), that are reaching glacier valleys. The present study examines the optical and radiative characteristics of BC at Bhojbasa, near Gaumukh (similar to 3800amsl). Real-time in-situ BC data, optical characteristics, radiative forcing, heating rate, several meteorological parameters, and BC transport pathways to this high-altitude site are investigated. The daily mean concentration of equivalent black carbon (eBC) was 0.28 +/- 0.21 mu g/m(3) over the research period, and the eBC from fossil fuel (BCFF) is dominant with 78 % with a daily mean of 0.22 +/- 0.19 mu g/m(3)(,) and eBC from biomass burning (BCBB) is 22 % with a daily mean of 0.06 +/- 0.08 mu g/m(3). Meteorological data, Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) imaging, and backward air-mass trajectory analysis demonstrate the presence of BC particles and their plausible transit pathways from multiple source locations to the pristine Gangotri Glacier Valley. The estimated daily mean BC radiative forcing values are +6.71 +/- 1.80 W/m(2) in the atmosphere, +1.87 +/- 1.16 W/m(2) at the top of the atmosphere, and -4.84 +/- 1.01 W/m(2) at the surface with a corresponding atmospheric heating rate of 0.19 +/- 0.05 K/day. These findings highlight the critical role of ground-based measurements in monitoring the fluctuations of BC over such varied Himalayan terrain, as they offer important information on the localized trends and effects. Long-term measurements of glacier valleys are essential for a comprehensive evaluation of the impact of BC particles on Himalayan ecology and climate.
Black carbon (BC) is a major short-lived climate pollutant (SLCP) with significant climate and environmentalhealth impacts. This review synthesizes critical advancements in the identification of emerging anthropogenic BC sources, updates to global warming potential (GWP) and global temperature potential (GTP) metrics, technical progress in characterization techniques, improvements in global-regional monitoring networks, emission inventory, and impact assessment methods. Notably, gas flaring, shipping, and urban waste burning have slowly emerged as dominant emission sources, especially in Asia, Eastern Europe, and Arctic regions. The updated GWP over 100 years for BC is estimated at 342 CO2-eq, compared to 658 CO2-eq in IPCC AR5. Recent CMIP6-based Earth System Models (ESMs) have improved attribution of BC's microphysics, identifying a 22 % increase in radiative forcing (RF) over hotspots like East Asia and Sub-Saharan Africa. Despite progress, challenges persist in monitoring network inter-comparability, emission inventory uncertainty, and underrepresentation of BC processes in ESMs. Future efforts could benefit from the integration of satellite data, artificial intelligence (AI)assisted methods, and harmonized protocols to improve BC assessment. Targeted mitigation strategies could avert up to four million premature deaths globally by 2030, albeit at a 17 % additional cost. These findings highlight BC's pivotal roles in near-term climate and sustainability policy.
The hygroscopic phase transition (HPT) latent heat of black carbon (BC) particles can affect the atmospheric energy budget. However, the source-dependent characteristics and underlying mechanisms remain poorly understood. Herein, three representative BCs (Corn Cob BC, Camphor Wood BC, and Coal BC) were systematically analyzed to quantify HPT latent heat and reveal component-specific contributions. By combining component-resolved analysis with differential scanning calorimetry, it was found that Coal BC exhibited the highest HPT latent heat at 97% RH (Delta H = 93.77 J g-1), which was approximately 253 times higher than that at 11% RH (Delta H = 0.37 J g-1). This was primarily driven by its inorganic component, including the water-extractable fraction (WEBC) and water-extractable minerals (WEM). The corresponding spectral shifts of WEBC (85-100 cm-1 blueshift) and WEM (100-105 cm-1 redshift) in O-H stretching bands under 97% RH indicate strong hydrogen-bonding and solvent effects. These inorganic-rich fractions, although accounting for only 10.1-18.0 wt % in Coal BC, controlled water uptake and latent-heat release, highlighting their pivotal role in BC's nonlinear thermodynamic behavior. This is the first study to quantitatively resolve BC's HPT latent heat and attribute it to specific components, providing thermodynamic insights for improving the parametrization of BC radiative effects in atmospheric models.
Accurately reproducing the measured scattering matrix of black carbon (BC) through numerical simulations remains a challenge. Researchers have developed various morphological models of BC and computed their scattering matrices in attempts to replicate experimental measurements. However, prior simulation endeavors frequently encountered issues such as significant discrepancies with observational data, implausible particle shapes, or unsuitable computational parameters. In this study, we developed a fractal-based overlapping and necking model to represent the morphology of bare BC particles. We computed the scattering matrices for both individual particles and particle population using these models and compared the results with the previously reported measurements. Our findings revealed that the overlapping model reproduces the measured scattering matrix elements more accurately, whereas the necking model fails to achieve similar consistency. At a wavelength of 532 nm, the overlapping model yields F 22(pi)/F 11(pi) ranging from 0.80 to 0.99 for single particles and from 0.86 to 0.99 for particle population, both of which are much closer to the experimental observations than those of the necking model. In contrast, only a small subset of results from the necking model falls within the measured range. The overlapping model outperforms the necking model in reproducing the scattering matrix and should be preferred for representing bare BC particles. The established understanding provides useful guidance for retrieving microphysical parameters of BC from polarization features and for diminishing the uncertainties associated with its radiative forcing estimates.
Black carbon (BC) is a major pollutant entering the human body through PM2.5 and posing major health effects. India lying in the Asia region is a major contributor to BC emissions from the combustion of biofuels. BC present in the atmosphere is a pollutant deteriorating air quality and is a light-absorbing aerosol (LAA), thus playing a dual role. In India, several studies have been published quantifying BC concentration. The optical measurement of BC has been carried out at multiple locations in India, and its radiative effect has been studied using the Santa Barbara DISORT Atmospheric Radiative Transfer (SBDART) model. This review is an attempt to collate those studies that have measured BC and estimated its radiative effect. The BC levels, spectral Aerosol Optical Depth (AOD), single scattering albedo (SSA) and direct radiative forcing (DRF) at the top of the atmosphere (TOA), at the surface (SUR) and heat within the atmosphere (ATM) for 20 years (2002 to 2023) have been analysed. It was found that many studies for performing DRF calculations have not used BC measurements and have used AOD analysis to characterise the sources of aerosols as direct BC measurements are not required to estimate the DRF. The selection of AOD wavelength 500 nm or 550 nm is not clear in the literature for BC-RF calculations and needs to be standardised for DRF. IPCC AR6 has estimated Effective Radiative Forcing (ERF) due to BC with temperature and surface feedbacks, and future studies for ERF need to use climate models with tools like WRF-Chem. The source of BC is mostly from fossil fuel or biomass burning during the winter season, while it is dust aerosols during the summer. Biomass burning, use of traditional cook stoves and aerosol episodes contribute to the warming of the ambient environment. Beijing, China, has reduced ATM forcing in the summer when compared to Delhi, India, and has reduced the fraction of heat exerted in the atmosphere. The interactions of BC-UHI are not studied yet in India, and with the ARFINET network, an attempt can be made in this direction. The Urban Pollution Island (UPI)-Urban Heat Island (UHI) review identified PM2.5 contributing to UHI intensity during the summer and winter in metro cities, while BC-UHI interactions are not dealt with in detail.
Light-absorbing carbonaceous aerosols (LACs), including black carbon (BC) and brown carbon (BrC), significantly influence Earth's radiative balance and global climate. However, their atmospheric aging processes and associated optical evolution remain insufficiently understood. In this study, in situ photochemical aging of ambient LACs under varying relative humidity (RH) conditions was simulated using an oxidation flow reactor (OFR). The distinct absorption evolution of BC and BrC was investigated, and the underlying mechanisms were explored. BC absorption primarily decreased under low-RH aging but significantly increased under high-RH aging. This contrasting behavior can be attributed to RH-dependent changes in BC coating processes: the dominant loss of preexisting coatings at low RH versus enhanced formation of secondary species that preferentially coat BC under high RH. Notably, BC absorption enhancement is more sensitive to nitrate, ammonium, and secondary organic aerosol (SOA) formation than to sulfate. BrC exhibited optical bleaching under both RH conditions; however, the bleaching rate was substantially accelerated under high RH at comparable photochemical ages within the range of below 5 equiv atmospheric aging days. This is primarily due to a 2-fold increase in the aqueous-phase photo-oxidative degradation of BrC chromophores derived from biomass-burning sources, whereas nonbiomass BrC showed RH-independent bleaching. These findings show that RH strongly modulates the chemical and optical aging of LACs, with important implications for their direct radiative forcing and better representation in climate models.