共检索到 7

Northern peatlands are a major component of the global carbon (C) cycle. Widespread climate-driven ecohydrological changes in these ecosystems can have major consequences on their C sequestration function. Here, we synthesize plant macrofossil data from 33 surficial peat cores from different ecoclimatic regions, with high-resolution chronologies. The main objectives were to document recent ecosystem state shifts and explore their impact on C sequestration in high-latitude undisturbed peatlands of northeastern Canada. Our synthesis shows widespread recent ecosystem shifts in peatlands, such as transitions from oligotrophic fens to bogs and Sphagnum expansion, coinciding with climate warming which has also influenced C accumulation during the last similar to 100 years. The rapid shifts towards drier bog communities and an expansion of Sphagnum sect. Acutifolia after 1980 CE were most pronounced in the northern subarctic sites and are concurrent with summer warming in northeastern Canada. These results provide further evidence of a northward migration of Sphagnum-dominated peatlands in North America in response to climate change. The results also highlight differences in the timing of ecosystem shifts among peatlands and regions, reflecting internal peatland dynamics and varying responses of vegetation communities. Our study suggests that the recent rapid climate-driven shifts from oligotrophic fen to drier bog communities have promoted plant productivity and thus peat C accumulation. We highlight the importance of considering recent ecohydrological trajectories when modelling the potential contribution of peatlands to climate change. Our study suggests that, contrary to expectations, peat C sequestration could be promoted in high-latitude non-permafrost peatlands where wet sedge fens may transition to drier Sphagnum bog communities due to warmer and longer growing seasons.

2022-03-01 Web of Science

Recent warming in the Andes is affecting the region's water resources including glaciers and lakes, which supply water to tens of millions of people downstream. High-elevation wetlands, known locally as bofedales, are an understudied Andean ecosystem despite their key role in carbon sequestration, maintenance of biodiversity, and regulation of water flow. Here, we analyze subfossil diatom assemblages and other siliceous bioindicators preserved in a peat core collected from a bofedal in Peru's Cordillera Vilcanota. Basal radiocarbon ages show the bofedal likely formed during a wet period of the Little Ice Age (1520-1680 CE), as inferred from nearby ice core data. The subfossil diatom record is marked by several dynamic assemblage shifts documenting a hydrosere succession from an open-water system to mature peatland. The diatoms appear to be responding largely to changes in hydrology that occur within the natural development of the bofedal, but also to pH and possibly nutrient enrichment from grazing animals. The rapid peat accretion recorded post-1950 at this site is consistent with recent peat growth rates elsewhere in the Andes. Given the many threats to Peruvian bofedales including climate change, overgrazing, peat extraction, and mining, these baseline data will be critical to assessing future change in these important ecosystems.

2021-08-01 Web of Science

Climate warming in high-latitude regions is thawing carbon-rich permafrost soils, which can release carbon to the atmosphere and enhance climate warming. Using a coupled model of long-term peatland dynamics (Holocene Peat Model, HPM-Arctic), we quantify the potential loss of carbon with future climate warming for six sites with differing climates and permafrost histories in Northwestern Canada. We compared the net carbon balance at 2100 CE resulting from new productivity and the decomposition of active layer and newly thawed permafrost peats under RCP8.5 as a high-end constraint. Modeled net carbon losses ranged from -3.0 kg C m(-2) (net loss) to +0.1 kg C m(-2) (net gain) between 2015 and 2100. Losses of newly thawed permafrost peat comprised 0.2%-25% (median: 1.6%) of old C loss, which were related to the residence time of peat in the active layer before being incorporated into the permafrost, peat temperature, and presence of permafrost. The largest C loss was from the permafrost-free site, not from permafrost sites. C losses were greatest from depths of 0.2-1.0 m. New C added to the profile through net primary productivity between 2015 and 2100 offset similar to 40% to >100% of old C losses across the sites. Differences between modeled active layer deepening and flooding following permafrost thaw resulted in very small differences in net C loss by 2100, illustrating the important role of present-day conditions and permafrost aggradation history in controlling net C loss.

2021-05-01 Web of Science

Northern peatlands sequester carbon (C) and nitrogen (N) over millennia, at variable rates that depend on climate, environmental variables and anthropogenic activity. The ombrotrophic peatlands of central and northern Alberta (Canada) have developed under variable climate conditions during the last hundreds to thousands of years, while in the course of the twentieth century, some regions were also likely subjected to anthropogenic disturbance. We aimed to quantify peat C and N accumulation rates for the last millennium from seven peatlands to estimate the relative influence of climate and anthropogenic disturbance on C accumulation dynamics. Peatlands have accumulated C at an average rate of 25.3 g C m(-2) year(-1) over the last millennium. Overall, climate was likely a major factor as, on average, highest apparent rates of C accumulation were found around 1100 CE, during the warmer Medieval Climate Anomaly, with lowest rates during the Little Ice Age, around 1750 CE. Local factors, such as disturbance, played a role in C sequestration at the site scale. The average N accumulation rate was 0.55 g N m(-2) year(-1), with high inter- and intra-site variability. In general, N accumulation mirrored patterns in C sequestration for peat deposited pre-1850 CE. However, higher N accumulation rates observed after 1850 CE, averaging 0.94 g N m(-2) year(-1), were not correlated with C accumulation. Moreover, some of the historically strongly accumulating sites may have become less efficient in sequestering C, and vice versa. All seven sites showed a marked decrease in delta N-15 when comparing pre- and post-1850 timeframes, consistent with increasing post-1850 N additions from an atmospheric source, likely biological N fixation. Overall, N was not a driving factor for C accumulation.

2020-12-01 Web of Science

High-latitude boreal and arctic surface/inland waters contain sizeable reservoirs of dissolved organic matter (DOM) and trace elements (TE), which are subject to seasonal freezing. Specifically, shallow ponds and lakes in the permafrost zone often freeze solid, which can lead to transformations in the colloidal and dissolved fractions of DOM and TE. Here, we present results from experimental freeze-thaw cycles using iron (Fe)- and DOM-rich water from thaw ponds situated in Stordalen and Storflaket palsa mires in northern Sweden. After ten cycles of freezing, 85% of Fe and 25% of dissolved organic carbon (DOC) were removed from solution in circumneutral fen water (pH 6.9) but a much smaller removal of Fe and DOC (< 7%) was found in acidic bog water (pH 3.6). This removal pattern was consistent with initial supersaturation of fen water with respect to Fe hydroxide and a lack of supersaturation with any secondary mineral phase in the bog water. There was a nearly two- to threefold increase in the low-molecular-weight (LMW) fraction of organic carbon (OC) and several TEs caused by the repeated freeze-thaw cycles. Future increases in the freeze-thaw frequency of surface waters with climate warming may remove up to 25% of DOC in circumneutral organic-rich waters. Furthermore, an increase of LMW OC may result in enhanced carbon dioxide losses from aquatic ecosystems since this fraction is potentially more susceptible to biodegradation.

2018-02-01 Web of Science

Stable Zn isotopes fractionation was studied in main biogeochemical compartments of a pristine larch forest of Central Siberia developed over continuous permafrost basalt rocks. Two north-and south-oriented watershed slopes having distinctly different vegetation biomass and active layer depth were used as natural proxy for predicting possible future climate changes occurring in this region. In addition, peat bog zone exhibiting totally different vegetation, hydrology and soil temperature regime has been studied. The isotopic composition of soil profile from Central Siberia is rather constant with a delta Zn-66 value around 0.2 parts per thousand close to the value of various basalts. Zn isotopic composition in mosses (Sphagnum fuscum and Pleurozium schreberi) exhibits differences between surface layers presenting values from 0.14 to 0.2 parts per thousand and bottom layers presenting significantly higher values (0.5 - 0.7 parts per thousand) than the underlain mineral surface. The humification of both dead moss and larch needles leads to retain the fraction where Zn bound most strongly thus releasing the lighter isotopes in solution and preserving the heavy isotopes in the humification products, in general accord with previous experimental and modeling works [GCA 75:7632-7643, 2011]. The larch (Larix gmelinii) from North and South-facing slopes is enriched in heavy isotopes compared to soil reservoir while larch from Sphagnum peatbog is enriched in light isotopes. This difference may result from stronger complexation of Zn by organic ligands and humification products in the peat bog compared to mineral surfaces in North- and South-facing slope. During the course of the growing period, Zn followed the behavior of macronutrients with a decrease of concentration from June to September. During this period, an enrichment of larch needles by heavier Zn isotopes is observed in the various habitats. We suggest that the increase of the depth of rooting zone, and the decrease of DOC and Zn concentration in soil solution from the root uptake zone with progressively thawing soil could provoke heavy isotopes to become more available for the larch roots at the end of the vegetative season compared to the beginning of the season, because the decrease of DOC will facilitate the uptake of heavy isotope as it will be less retained in strong organic complexes.

2015-04-16 Web of Science

Wildfire is an important factor on carbon sequestration in the North American boreal biomes. Being globally important stocks of organic carbon, peatlands may be less sensitive to burning in comparison with upland forests, especially wet unforested ombrotrophic ecosystems as found in northeastern Canada. We aimed to determine if peatland fires have driven carbon accumulation patterns during the Holocene. To cover spatial variability, six cores from three peatlands in the Eastmain region of Quebec were analyzed for stratigraphic charcoal accumulation. Results show that regional Holocene peatland fire frequency was similar to 2.4 fires 1000 yr(-1), showing a gradually declining trend since 4000 cal yr BP, although inter- and intra-peatland variability was very high. Charcoal peak magnitudes, however, were significantly higher between 1400 and 400 cal yr BP, possibly reflecting higher charcoal production driven by differential climatic forcing aspects. Carbon accumulation rates generally declined towards the late-Holocene with minimum values of similar to 10 g m(-2) r(-1) around 1500 cal yr BP. The absence of a clear correlation between peatland fire regimes and carbon accumulation indicates that fire regimes have not been a driving factor on carbon sequestration at the millennial time scale. (C) 2012 University of Washington. Published by Elsevier Inc. All rights reserved.

2012-07-01 Web of Science
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-7条  共7条,1页