This study investigates the inter-annual variability of carbonaceous aerosols (CA) over Kolkata, a megacity in eastern India, using dual carbon isotopes (C-14 and C-13) alongside measurements of the optical properties of brown carbon (BrC). Sampling was conducted during the post-monsoon, winter, and spring seasons over two consecutive years (2020-21 and 2021-22). The analysis reveals that PM2.5 and CA concentrations were higher in 2020-21 (194 +/- 40 and 54 +/- 15 mu g m(-3), respectively) compared to 2021-22 (141 +/- 31 and 44 +/- 21 mu g m(-3)), likely due to higher precipitation in 2021-22. The contribution of biomass burning and biogenic sources to CA (f(bio_TC)) was slightly higher in 2020-21 (70 +/- 3 %) than in 2021-22 (68 +/- 3 %), with both years exhibiting a consistent decreasing trend from post-monsoon to spring. Observed lower values for oxidised CA proxies, such as the WSOC/OC ratio (0.41 +/- 0.08) and AMS-derived f(44) (0.13 +/- 0.02), throughout the study period suggest that surface CA over Kolkata primarily originates from local sources rather than long-range transport. The relative radiative forcing (RRF) also showed a clear reduction in the subsequent year; however, on average, the RRF of methanol-soluble BrC (16 +/- 6 %) was approximately three times higher than that of the water-soluble fraction (5.5 +/- 2.2 %), highlighting the substantial role of BrC in influencing regional radiative forcing. These findings underscore the substantial impact of local emissions over transported pollutants on Kolkata's ground-level air quality.
Light-absorbing carbonaceous aerosols (LACs), including black carbon (BC) and brown carbon (BrC), significantly influence Earth's radiative balance and global climate. However, their atmospheric aging processes and associated optical evolution remain insufficiently understood. In this study, in situ photochemical aging of ambient LACs under varying relative humidity (RH) conditions was simulated using an oxidation flow reactor (OFR). The distinct absorption evolution of BC and BrC was investigated, and the underlying mechanisms were explored. BC absorption primarily decreased under low-RH aging but significantly increased under high-RH aging. This contrasting behavior can be attributed to RH-dependent changes in BC coating processes: the dominant loss of preexisting coatings at low RH versus enhanced formation of secondary species that preferentially coat BC under high RH. Notably, BC absorption enhancement is more sensitive to nitrate, ammonium, and secondary organic aerosol (SOA) formation than to sulfate. BrC exhibited optical bleaching under both RH conditions; however, the bleaching rate was substantially accelerated under high RH at comparable photochemical ages within the range of below 5 equiv atmospheric aging days. This is primarily due to a 2-fold increase in the aqueous-phase photo-oxidative degradation of BrC chromophores derived from biomass-burning sources, whereas nonbiomass BrC showed RH-independent bleaching. These findings show that RH strongly modulates the chemical and optical aging of LACs, with important implications for their direct radiative forcing and better representation in climate models.
The direct radiative impact of atmospheric aerosols remains more uncertain than that of greenhouse gases, largely due to the complex transformations' aerosols undergo during atmospheric aging. Sulfate aerosols have been the subject of considerable research, with a robust body of literature characterising their cooling effect. In contrast, the light-absorbing properties and warming potential of black carbon and related products remain less well understood, with limited research available to date. The present study examines the iron-catalyzed reaction of catechol in levitated microdroplets, tracked in situ using elastic light scattering spectroscopy. The reaction forms water-insoluble polycatechol aggregates, which drive a transition from homogeneous spheres to heterogeneous droplets with internal inclusions. To interpret the evolving optical behaviour, the Multiple Sphere T-Matrix (MSTM) model is employed, a method which overcomes the limitations of Mie theory by accounting for internal morphological complexity. The model provides realistic complex refractive indices and fractal parameters, though it should be noted that its solutions are not unique due to sensitivity to input assumptions and droplet variability. This underscores the necessity for supplementary measurements and more comprehensive models incorporating evaporation, chemical dynamics, and phase transitions. These findings emphasise the potential of elastic scattering spectroscopy for real-time monitoring of multiphase chemistry and offer new constraints for improving aerosol aging schemes in climate models, thereby contributing to reduced uncertainties in aerosol radiative forcing.
Atmospheric brown carbon (BrC) from wildfires is a key component of light-absorbing carbon that significantly contributes to global radiative forcing, but its atmospheric evolution and lifetime remain poorly understood. In this study, we investigate BrC evolution by synthesizing data from one laboratory campaign and four aircraft campaigns spanning diverse spatial scales across North America. To estimate initial conditions for evaluating plume evolution, we develop a method to parametrize the emission ratios of BrC and other species using commonly measured inert tracers, acetonitrile and hydrogen cyanide. The evolution of BrC absorption in the free troposphere is characterized as a function of hydroxyl radical (OH) exposure, yielding an effective photochemical rate constant of 9.7-1.6 +4.8 x 10-12 cm3 molecule-1 s-1. The relatively slow reaction rate results in small BrC decay within the first few hours after emission, making it difficult to distinguish from source variability. This helps explain the absence of clear evolutionary trends in near-field studies. Assuming an OH concentration of 1.26 x 106 molecules cm-3, this rate constant corresponds to an e-folding lifetime of approximately 23 h. After extensive photooxidation (OH exposure similar to 1012 molecules cm-3 s), 4 +/- 2% of the emitted BrC persists, representing a recalcitrant fraction with potential long-term climate impacts. These results improve our understanding of BrC variability and photochemical processing and provide critical constraints for modeling its impacts on climate.
The extensive utilization of agricultural machinery in China has made it a prominent contributor to particulate matter (PM). However, there still exist significant knowledge gaps in understanding optical characteristics and molecular composition of chromophores of brown carbon (BrC) in PM emitted from agricultural machinery. Therefore, BrC in PM from six typical agricultural machines in China were measured to investigate the light absorption, chromophore characteristics, and influencing factors. Results showed that the average emission factors of methanol-soluble organic carbon (MSOC) and water-soluble organic carbon (WSOC) were 0.96 and 0.21 g (kg fuel)-1, respectively, exhibiting clear decreasing trends with increasing engine power and improving emission standards. Despite the light absorption coefficient of methanol-extracted BrC (Abs365,M) being approximately 2.2 times higher than that of water (Abs365,W), mass absorption efficiency of water-extracted BrC (MAE365,W) exhibited significantly greater values than MAE365,M. Among the detected chromophores, nitro-aromatic compounds (NACs) exhibited the highest contribution to light absorption that was about 14.5 times more than to total light absorption compared to their mass contributions to MSOC (0.04%), followed by polycyclic aromatic hydrocarbons (PAHs) and oxygenated PAHs (OPAHs). Besides, the average integrated simple forcing efficiency values were estimated to be 1.5 W g-1 for MSOC and 3.7 W g-1 for WSOC, indicating significant radiative forcing absorption of agricultural machinery. The findings in this study not only provide fundamental data for climate impact estimation of but also propose effective strategies to mitigate BrC emissions, such as enhancing emission standards and promoting the adoption of high-power agricultural machinery.
Smoky haze which occurs during large-scale wildfires essentially transforms the radiative regime of the atmosphere over large territories. The variability of shortwave radiation fluxes in a smoke-laden atmosphere is driven by variations in the optical and microphysical properties of smoke aerosols, including the spectral dependences of the imaginary part of the refractive index. These dependences are determined by the presence of black carbon, brown carbon, and radiation-selective absorbing organic compounds in aerosol particles. This study analyzes the aforementioned spectral dependences based on AERONET data during large-scale wildfires in Alaska in 2019 and Canada in 2023. The analysis includes the cases of extreme radiation absorption by black and brown carbon, where the imaginary part of the refractive index at a wavelength of 440 nm attained 0.50 and 0.27, respectively. Variations in the spectral dependence of the imaginary part of the refractive index under moderate manifestations of selective absorption of smoke aerosol during massive fires in Alaska and Canada are analyzed. Approximations for the spectral dependence of the imaginary part of the refractive index are suggested. The aerosol radiative forcing at the top of the atmosphere is estimated for the cases of extreme radiation absorption by black carbon and brown carbon in the visible and near-infrared spectral regions and of anomalous selective absorption. The results can be useful in monitoring of the radiative regime of the atmosphere and for the development of atmospheric remote sounding techniques.
Aerosols significantly impact the Earth's climate, affecting the amount of solar radiation that reaches its surface and directly impacting global warming. A large uncertainty regarding the impacts of aerosols on climate is related to Brown Carbon (BrC), an organic constituent emitted due to the incomplete combustion of light-absorbing biomass. This study aimed to define and quantify Black Carbon (BC) and Brown Carbon (BrC) absorptions using in-situ measurements from a campaign carried out in the Pantanal Mato Grosso between 2017 and 2019. The models were adjusted to calculate the Radiative Forcing (RF). By examining the RF perturbations caused by these two components, it was possible to determine the radiative balance perturbations at the upper atmospheric layer (top) and the surface. This study presented innovative findings that may help improve the understanding of the energy balance in the Pantanal region while allowing more accurate estimates of the contribution of aerosols to climate change models.
Atmospheric Brown Carbon (BrC) with strong wavelength-dependence light-absorption ability can significantly affect radiative forcing. Highly resolved emission inventories with lower uncertainties are important premise and essential in scientifically evaluating impacts of emissions on air quality, human health and climate change. This study developed a bottom-up inventory of primary BrC from combustion sources in China from 1960 to 2016 with a spatial resolution at 0.1 degrees x 0.1 degrees, based on compiled emission factors and detailed activity data. The primary BrC emission in China was about 593 Gg (500-735 Gg as interquartile range) in 2016, contributing to 7% (5%-8%) of a previously estimated global total BrC emission. Residential fuel combustion was the largest source of primary BrC in China, with the contribution of 67% as the national average but ranging from 25% to 99% among different provincial regions. Significant spatial disparities were also observed in the relative shares of different fuel types. Coal combustion contribution varied from 8% to 99% across different regions. Heilongjiang and North China Plain had high emissions of primary BrC. Generally, on the national scale, spatial distribution of BrC emission density per area was aligned with the population distribution. Primary BrC emission from combustion sources in China have been declined since a peak of similar to 1300 Gg in 1980, but the temporal trends were distinct in different sectors. The high-resolution inventory developed here enables radiative forcing simulations in future atmospheric models so as to promote better understanding of carbonaceous aerosol impacts in the Earth's climate system and to develop strategies achieving co-benefits of human health protection and climate change.
Brown carbon (BrC) has been recognized as an important light-absorbing carbonaceous aerosol, yet understanding of its influence on regional climate and air quality has been lacking, mainly due to the ignorance of regional coupled meteorology-chemistry models. Besides, assumptions about its emissions in previous explorations might cause large uncertainties in estimates. Here, we implemented a BrC module into the WRF-Chem model that considers source-dependent absorption and avoids uncertainties caused by assumptions about emission intensities. To our best knowledge, we made the first effort to consider BrC in a regional coupled model. We then applied the developed model to explore the impacts of BrC absorption on radiative forcing, regional climate, and air quality in East Asia. We found notable increases in aerosol absorption optical depth (AAOD) in areas with high OC concentrations. The most intense forcing of BrC absorption occurs in autumn over Southeast Asia, and values could reach around 4 W m(-2). The intensified atmospheric absorption modified surface energy balance, resulting in subsequent declines in surface temperature, heat flux, boundary layer height, and turbulence exchanging rates. These changes in meteorological variables additionally modified near-surface dispersion and photochemical conditions, leading to changes of PM2.5 and O-3 concentrations. These findings indicate that BrC could exert important influence in specific regions and time periods. A more in-depth understanding could be achieved later with the developed model.
The Black carbon (BC) and Brown carbon (BrC) concentration has been measured over Srinagar (Garhwal) in central Himalayas during October 2020 to September 2021 periods. The average BC mass was 2.59 +/- 1.96 mu g m- 3 and its absorption coefficients were abundant at shorter wavelength. BC seasonal variation exhibited a significant variability, with highest during winter (4.54 +/- 2.64 mu g m- 3) followed by pre-monsoon (2.69 +/- 2.04 mu g m- 3) and post-monsoon (1.93 +/- 0.91 mu g m- 3) while lowest was observed in the monsoon (1.05 +/- 0.54 mu g m- 3). Relatively high contribution of total spectral light absorption coefficient (Abs lambda) was observed (75.94 Mm-1) at 370 nm than longer wavelength (16.86 Mm-1) at 950 nm. The BrC contribution was higher at 370 nm (32.50 Mm-1) to the total babs (lambda), while at higher wavelengths it has extensively decreased (2.54 Mm-1 at 660 nm). Seasonally, the absorption coefficient of BC and BrC was greater in winter (83.99 and 68.37 Mm-1) while lowest in monsoon (19.38 and 9.27 Mm-1), respectively. The babs BrC/babs (t) ratio revealed higher contribution of BrC in winters. The secondary brown carbon (BrCsec) and primary brown carbon (BrCpri) contributed 43.16 % and 56.88 % towards the total BrC Abs (lambda) at 370 nm with higher in winter and lowest in monsoon, respectively. BrCsec and BrCprim has shown higher contribution in evening (18.00-20.00 h) and in morning (09.00-11.00 h) hours. The average radiative forcing (RF) of BC was 36.11 +/- 6.99 Wm-2, 2.19 +/- 1.22 Wm-2 and -33.92 +/- 5.96 Wm-2 at the atmosphere (ATM), Top of the Atmosphere (TOA), and at the Surface (SUR), respectively.