共检索到 2

Over the past several decades, various trends in vegetation productivity, from increases to decreases, have been observed throughout Arctic-Boreal ecosystems. While some of this variation can be explained by recent climate warming and increased disturbance, very little is known about the impacts of permafrost thaw on productivity across diverse vegetation communities. Active layer thickness data from 135 permafrost monitoring sites along a 10 degrees latitudinal transect of the Northwest Territories, Canada, paired with a Landsat time series of normalized difference vegetation index from 1984 to 2019, were used to quantify the impacts of changing permafrost conditions on vegetation productivity. We found that active layer thickness contributed to the observed variation in vegetation productivity in recent decades in the northwestern Arctic-Boreal, with the highest rates of greening occurring at sites where the near--surface permafrost recently had thawed. However, the greening associated with permafrost thaw was not sustained after prolonged periods of thaw and appeared to diminish after the thaw front extended outside the plants' rooting zone. Highest rates of greening were found at the mid-transect sites, between 62.4 degrees N and 65.2 degrees N, suggesting that more southernly sites may have already surpassed the period of beneficial permafrost thaw, while more northern sites may have yet to reach a level of thaw that supports enhanced vegetation productivity. These results indicate that the response of vegetation productivity to permafrost thaw is highly dependent on the extent of active

期刊论文 2023-06-18 DOI: 10.1111/gcb.16812 ISSN: 1354-1013

Broad-scale changes in arctic-alpine vegetation and their global effects have long been recognized and labeled one of the clearest examples of the terrestrial impacts of climate change. Arctic-alpine dwarf shrubs are a key factor in those processes, responding to accelerated warming in complex and still poorly understood ways. Here, we look closely into such responses of deciduous and evergreen species, and for the first time, we make use of high-precision dendrometers to monitor the radial growth of dwarf shrubs at unprecedented temporal resolution, bridging the gap between classical dendroecology and the underlying growth physiology of a species. Using statistical methods on a five-year dataset, including a relative importance analysis based on partial least squares regression, linear mixed modeling, and correlation analysis, we identified distinct growth mechanisms for both evergreen (Empetrum nigrum ssp. hermaphroditum) and deciduous (Betula nana) species. We found those mechanisms in accordance with the species respective physiological requirements and the exclusive micro-environmental conditions, suggesting high phenotypical plasticity in both focal species. Additionally, growth in both species was negatively affected by unusually warm conditions during summer and both responded to low winter temperatures with radial stem shrinking, which we interpreted as an active mechanism of frost protection related to changes in water availability. However, our analysis revealed contrasting and inter-annually nuanced response patterns. While B. nana benefited from winter warming and a prolonged growing season, E. hermaphroditum showed high negative sensitivity to spring cold spells after an earlier growth start, relying on additional photosynthetic opportunities during snow-free winter periods. Thus, we conclude that climate-growth responses of dwarf shrubs in arctic-alpine environments are highly seasonal and heterogenic, and that deciduous species are overall likely to show a positive growth response to predicted future climate change, possibly dominating over evergreen competitors at the same sites, contributing to the ongoing greening trend.

期刊论文 2021-08-01 DOI: 10.1002/ecs2.3688 ISSN: 2150-8925
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-2条  共2条,1页