共检索到 71

This study investigated the impact of optimum dosages of nano-calcium carbonate (nano-CaCO3) and nanosilica on the engineering behavior of black cotton soil. The desired percentage of nano-addition, 2%, for both nanomaterials, was determined by analyzing the plasticity-compaction characteristics and the relative strength index values of treated samples. The study unveiled that the entire clay microstructure was transformed into a nanocrystalline matrix after treatment. The deviatoric strength enhancement with confining pressure and curing period was significant after treating the soil with either nano-CaCO3 or nanosilica. The nanosilica treatment was found to be more effective in improving the California bearing ratio (CBR) strength of black cotton soil samples compared with nano-CaCO3 stabilization. The addition of nanomaterials induced the formation of nanocrystalline hydrate gels and silica gel, resulting in an increased resistance to volumetric deformation under compressive stresses. The hydraulic conductivity of nano-treated samples dropped due to the highly tortuous networks between pores in the nano-crystalline structure. The experimental results were substantiated by analyzing the microstructure of nano-treated soils using X-ray diffraction (XRD), scanning electron microscopy (SEM), and Fourier transform infrared (FTIR) techniques.

期刊论文 2025-08-01 DOI: 10.1061/JGGEFK.GTENG-12672 ISSN: 1090-0241

In this study, ground granulated blast-furnace slag (GGBS) and fly ash (FA) were used as binders, while NaOH (NH) and Na2SiO3 (NS) served as alkali activators. Seawater (SW) was used instead of freshwater (FW) to develop a SW-GGBS-FA geopolymer for solidifying sandy soils. Geopolymer mortar specimens were tested for unconfined compressive strength (UCS) after being curing at room temperature. The results showed that the early strength of the seawater group specimens increased slowly less than that of the freshwater group specimens, while the late strength was 1.16 times higher than that of the freshwater group specimens. Factors including seawater salinity (SS), the GGBS/FA ratio, curing agent (CA) content, and the NH/ NS ratio were examined in this experiment. The results showed that the strength of the specimens was higher for SS of 1.2 %, G90:F10, CA content of 15 %, activator content was 15 %, and NH: NS of 50:50. The pore structure of the mortar specimens was analyzed using X-ray diffraction (XRD), scanning electron microscopy (SEM), and computerized tomography (CT), revealing the mechanisms by which various factors influenced the microstructure. XRD indicated that SW-GGBS-FA geopolymer mortar newly produced Friedel salt and calcium silicate sulfate hydrate (C-S-S-H). The microstructures observed by CT and SEM showed that the pore radius of the seawater specimens was mainly less than 10 mu m, and the maximum crack length was 92.55 mu m. The pore radius of freshwater specimens was larger than that of seawater specimens, and the largest crack was 148.44 mu m, which confirmed that Friedel salt and C-S-S-H fill the pores and increase the UCS of the specimens.

期刊论文 2025-07-01 DOI: 10.1016/j.cscm.2025.e04662 ISSN: 2214-5095

To address the issues of high porosity and low strength in calcium sand of artificial islands, this study focuses on improving the calcium sand's mechanical properties. The effects of WER curing methods and coconut fiber modification on the UCS and microscopic mechanisms of calcium sand are investigated. The results indicate that both fiber incorporation and the increase in WER ratio can enhance the unconfined compressive strength of calcareous sand, with the addition of a certain amount of coconut coir fiber showing a more significant strength increase. The optimal recommended dosage of WER is 15%, which results in an UCS of 1218 kPa, an increase of nearly 4.27 times compared to 9% WER dosage. Coconut coir fiber has good tensile strength that can improve the compressive strength of calcareous sand after curing. The UCS of calcareous sand cured with a fiber content of 0.3% to 0.5% is increased by 1247 kPa to 1792 kPa compared to cured soil with no fiber. The strong binding nature of WER addresses the issue of large porosity in calcareous sand. Together with the penetrating coconut coir fibers, it forms a three-dimensional reticular framework structure, thereby enhancing the compressive performance of the calcareous sand-cured soil mass.

期刊论文 2025-06-03 DOI: 10.1080/1064119X.2024.2383291 ISSN: 1064-119X

Transforming waste materials into valuable commodities is a promising strategy to alleviate challenges associated with managing solid waste, benefiting both the environment and human well-being. This study is focused towards harnessing the potential of waste eggshell microparticles (ESMP) (0.10, 0.15, 0.20 g/150 mL) as reinforcing biofiller and orange peel essential oil (OPEO) (14 %, 25 % and 36 %, w/w) as bioactive agent with pectin (2.80, 2.85, 2.90, and 3.00 g/150 mL) to fabricate five different biocomposite films using particle dispersion and solvent casting technique. The addition of ESMP and OPEO progressively increased film thickness and led to variations in transparency. Micromorphological analysis and vibrational spectroscopy indicated hydrophobicity and compactness, as showed by the loss of free O- H bonds, sharpening of aliphatic C- H and stretching of C = C, C- O and C- O- C bonds with increasing filler content. Noticeable improvements in thermal stability and tensile strength were observed, while the flexibility was minimized. The films displayed remarkable barrier properties against hydrological stress, as evidenced by a reduction in water activity, moisture content, water uptake capacity, and solubility. The antioxidant activity against DPPH radicals suggested efficient release of bioactive compounds. Antibacterial assessment revealed inhibitory effect on Staphylococcus aureus and Bacillus cereus. During soil burial, notable weight loss along with shrinkage confirmed the film biodegradability. In conclusion, the pectin-ESMP-OPEO biocomposite films show potential characteristics as food packaging materials, warranting further performance testing on food samples.

期刊论文 2025-06-01 DOI: 10.1016/j.afres.2025.100735 ISSN: 2772-5022

Salt-affected soils severely decrease agricultural productivity by reducing the uptake of water and nutrients by plants, toxic ions accumulation and soil structure degradation. The sustainable synthesis of hybrid nanospheres through green approaches has emerged as an effective strategy to enhance crop productivity and improve tolerance to abiotic stress. However, the defensive functions and fundamental mechanisms of green synthesized calcium-doped carbon nano-spheres in protecting maize against salt stress remain elusive. Thus, calcium-doped carbon nanospheres were innovatively synthesized by doping calcium oxide nanoparticles (CaO NPs) with lignin nanoparticles (LNPs) which were further analyzed using Fourier Transform Infrared Spectroscopy (FT-IR), Energy Dispersive X-Ray Spectroscopy (EDX), Field Emission Scanning Electron Microscopy (FE-SEM) and Transmission Electron Microscopy (TEM). These analyses validated the successful doping of Ca@CNs, elucidating the purity and morphology of the hybrid nanospheres. More importantly, the effect of Ca@CNs on maize plants under NaCl stress, unreported so far, was examined. Results of the current study showed that treating salt-stressed plants with Ca@CNs significantly improved maize growth and biomass accumulation by enhanced absorption of minerals and improved photosynthetic efficiency. Furthermore, Ca@CNs application has also reduced NaCl-induced oxidative damage by enhancing antioxidant defense mechanisms and maintaining cellular integrity, resulting in improved resistance to salt stress. Moreover, Ca@CNs substantially up-regulated the expression of salt-tolerant genes ZmNHX3, CBL, ZmHKT1, and MAPK1, as well as genes involved in lignin biosynthesis such as 4CL2, PAL1, CCR, and COMT, in both shoot and root tissues. Conversely, the expression levels of genes Zm00001d003114, Zm0001d026638, Zm00001d028582 and Zm00001d051069 associated with Ca2 +-responsive SOS3 pathway were all down-regulated under NaCl treatment, while up-regulated in the presence of Ca@CNs along with NaCl. The observed changes in transcript levels of these genes highlight the potential of Ca@CNs in alleviating NaCl toxicity. These results demonstrated that the green synthetic Ca@CNs can significantly alleviate salt stress and promote plant growth in saline environments, which will provide a new strategy for the utilization of nanoparticles in agriculture to maintain sustainable agriculture and improve crop yield.

期刊论文 2025-06-01 DOI: 10.1016/j.jece.2025.117061 ISSN: 2213-2929

Recycled aggregates (RA) from construction and demolition waste have many shortcomings such as high porosity and low strength due to adhered mortar and defects inside. If the defects (micropores and microcracks) of RA were repaired, the quality of RA could be improved greatly and its application could be further enlarged. Our previous study has proposed a new modification method, enzyme-induced carbonate precipitation (EICP), to repair the internal defects of RA. In this study, the efforts were focused on the optimization of the EICP treatment. It was found that the two-step immersion method, consisting of preimmersing in CO(NH2)2-Ca(NO3)2 solution for 24 h, then adding urease solution at once with single treatment duration of 5 days and cycling two treatments, was the optimal treatment. Compared with the untreated RA, the water absorption and crush value of treated recycled concrete aggregates (T-CA) were decreased by 7.01% and 9.91%, respectively, and 21.59% and 14.40% for treated recycled mixed aggregates (T-MA), respectively. By use of the optimized EICP-treated RA, the compressive strength of concrete increased by 6.05% (T-CA concrete) and 9.23% (T-MA concrete), and the water absorption of concrete decrease by 11.46% (T-CA concrete) and 18.62% (T-MA concrete). This indicates that the optimized EICP treatment could reduce the porosity and improve the strength of aggregates, thus enhancing the mechanical properties and impermeability of recycled concrete.

期刊论文 2025-06-01 DOI: 10.1061/JMCEE7.MTENG-19852 ISSN: 0899-1561

As a green remediation technology for complete remediation of contaminated soil, the combination of easily recoverable adsorbents and washing still faces challenges such as low remediation efficiency and unclear remediation mechanisms. Hence, the bis Schiff base functional group comprising sulfhydryl groups was loaded into the UiO-66 calcium alginate spheres (UiO-66-AMB-ACPs) to obtain efficient selective adsorption. The results of response surface optimization showed that the maximum removal of Pb and Cd from soil reached 69.73% and 82.63% by the combination of UiO-66-AMB-ACPs with acetic acid, of which about 95.55% and 60.31% were attributed to the adsorption. Factor interaction analysis demonstrated that solid-liquid ratio combined with either adsorbent dosage or acetic acid concentration significantly affected Cd adsorption rates. In the above system, Schiff bases,-SH, and carboxylic acids in UiO-66-AMB-ACPs compete for the Pb and Cd captured by acetic acid through chelation, ion exchange, and complexation, which assisted in maintaining the high desorption rate to further enhance the resolution process of acid-soluble and reduced Pb and Cd. The release of free acetic acid will again participate in the resolution of heavy metals, thus constituting an internal cycle of acetic acid. UiO-66-AMB-ACPs were maintained in a stable state during each of the 18 cycles. The remediated soil retained most of the plant nutrients, while the mobility of residual heavy metals was greatly inhibited. This technique showed promise for the total removal and recovery of Pb and Cd from contaminated soils with low damage and short time while immobilizing the residual heavy metals.

期刊论文 2025-06-01 DOI: 10.1016/j.cej.2025.162901 ISSN: 1385-8947

Cementations bind sand/soil particles via physical and chemical interactions to form composite solids with macroscopic mechanical properties. While conventional cementation processes (e.g., silicate cement production, phosphate adhesive synthesis, and lime calcination) remain energy-intensive, bio-cementation based on ureolytic microbially induced carbonate precipitation (UMICP) has emerged as an environmentally sustainable alternative. This microbial-mediated approach demonstrates comparable engineering performance to traditional methods while significantly reducing carbon footprint, positioning it as a promising green technology for construction applications. Nevertheless, three critical challenges hinder its practical implementation: (1) suboptimal cementation efficiency, (2) uneven particle consolidation, and (3) ammonia byproduct emissions during ureolysis. To address these limitations, strategic intervention in the UMICP process through polymer integration has shown particular promise. This review systematically examines polymer-assisted UMICP (P-UMICP) technology, focusing on three key enhancement mechanisms: First, functional polymers boost microbial mineralization efficacy through multifunctional roles, namely microbial encapsulation for improved survivability, calcium carbonate nucleation site provision, and intercrystalline bonding via nanoscale mortar effects. Second, polymeric matrices enable homogeneous microbial distribution within cementitious media, facilitating uniform bio-consolidation throughout treated specimens. Third, selected polymer architectures demonstrate ammonium adsorption capabilities through ion-exchange mechanisms, effectively mitigating ammonia volatilization during urea hydrolysis. Current applications of P-UMICP span diverse engineering domains, including but not limited to crack repair, bio-brick fabrication, recycled brick aggregates utilization, soil stabilization, and coastal erosion protection. The synergistic combination of microbial cementation with polymeric materials overcomes the inherent limitations of pure UMICP systems and opens new possibilities for developing next-generation sustainable construction materials.

期刊论文 2025-05-24 DOI: 10.1007/s11157-025-09729-3 ISSN: 1569-1705

Background and aimsCalcium salts are prevalent in soils, and excessive amounts of these salts can subject crops to abiotic stress, leading to yield reduction or death. While the effects of Ca2+ in calcium salt stress have been widely reported, the role of the anions remains unclear.MethodsThe response of the calcium-secreting plant Ceratostigma willmottianum to five (0, 25, 50, 100, and 200 mM) equimolar concentrations (also iso-osmotic) of Ca(NO3)2 and CaCl2 in terms of growth, morpho-anatomy, photosynthesis, physiology and biochemistry, and ion content was evaluated.ResultsPlants were more sensitive to CaCl2 than to equal concentrations of Ca(NO3)2, which caused more severe water deficit, oxidative damage, and inhibition of photosynthesis and growth. The CaCl2 sensitivity may be related to the toxicity of Cl-, which accumulates in large amounts in leaves (661-2149 mM); however, under the Ca(NO3)2 treatments, the leaf NO3- concentrations were 42-210 mM. Cl- inhibited chlorophyll synthesis and accelerated chlorophyll degradation, leading to photosystem disruption, and its inhibition of photosynthesis may involve both stomatal and nonstomatal limitation. In contrast, NO3- was not ionotoxic but rather promoted nitrogen assimilation and chlorophyll synthesis. The inhibition of photosynthesis by 100-200 mM Ca(NO3)2 originated mainly from stomatal limitation triggered by osmotic water loss. In addition, the Ca2+ secretion rate increased under calcium salt stress, which may represent a strategy for adaptation to high-calcium environments.ConclusionThe present study provides valuable information for a comprehensive understanding of calcium salt injury mechanisms and plant adaptation to high-calcium environments.

期刊论文 2025-05-22 DOI: 10.1007/s11104-025-07548-7 ISSN: 0032-079X

High lime content in agricultural soils poses a significant challenge to crop production, particularly in viticulture. Due to the persistent and detrimental effects of lime stress on plant growth, the present study investigated the potential of iron oxide nanoparticles (Fe3O4-NPs) to mitigate lime-induced stress in 1103 Paulsen American grapevine rootstock. We examined the effects of Fe3O4-NPs (0, 0.01, 0.1, and 1 ppm) under varying lime stress conditions (0%, 20%, 40%, and 60% CaCO3). Our findings revealed that increasing lime content progressively inhibited grapevine growth, with significant reductions in shoot fresh weight, root fresh weight, shoot length, and leaf number. Fe3O4-NP application demonstrated pronounced protective effects: 0.1 ppm Fe3O4-NPs optimized growth under non-stressed conditions, while 1 ppm Fe3O4-NPs significantly improved plant performance under 60% lime stress. Notably, nanoparticle treatments mitigated oxidative stress by reducing membrane damage, lipid peroxidation, and leaf temperature while maintaining photosynthetic efficiency and osmotic balance. Fe3O4-NPs demonstrated significant potential in mitigating lime-induced stress in grapevines, with optimal concentrations of 0.1 ppm for low-moderate lime environments and 1 ppm for high lime content areas. These findings provide a targeted nanobiotechnological approach to enhance grapevine resilience in calcareous soils, advancing sustainable viticulture strategies.

期刊论文 2025-05-01 DOI: 10.1007/s11738-025-03805-5 ISSN: 0137-5881
  • 首页
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 末页
  • 跳转
当前展示1-10条  共71条,8页