Naphthalene is a fungicide that can also be a phase-change agent owing to its high crystallization enthalpy at about 80 degrees C. The relatively rapid evaporation of naphthalene as a fungicide and its shape instability after melting are problems solved in this work by its placement into a cured epoxy matrix. The work's research materials included diglycidyl ether of bisphenol A as an epoxy resin, 4,4 '-diaminodiphenyl sulfone as its hardener, and naphthalene as a phase-change agent or a fungicide. Their miscibility was investigated by laser interferometry, the rheological properties of their blends before and during the curing by rotational rheometry, the thermophysical features of the curing process and the resulting phase-change materials by differential scanning calorimetry, and the blends' morphologies by transmission optical and scanning electron microscopies. Naphthalene and epoxy resin were miscible when heated above 80 degrees C. This fact allowed obtaining highly concentrated mixtures containing up to 60% naphthalene by high-temperature homogeneous curing with 4,4 '-diaminodiphenyl sulfone. The initial solubility of naphthalene was only 19% in uncured epoxy resin but increased strongly upon heating, reducing the viscosity of the reaction mixture, delaying its gelation, and slowing cross-linking. At 20-40% mass fraction of naphthalene, it almost entirely retained its dissolved state after cross-linking as a metastable solution, causing plasticization of the cured epoxy polymer and lowering its glass transition temperature. At 60% naphthalene, about half dissolved within the cured polymer, while the other half formed coarse particles capable of crystallization and thermal energy storage. In summary, the resulting phase-change material stored 42.6 J/g of thermal energy within 62-90 degrees C and had a glass transition temperature of 46.4 degrees C at a maximum naphthalene mass fraction of 60% within the epoxy matrix.
Novel elastomers are made by reaction of hydroxyl-terminated polyacrylic ester (HyTemp) with polyethylene glycol (PEG, number of ethylene glycol units 1, 3, 6, 9) based cross-linkers. The influence of the cross-linker length, the HyTemp/cross-linker (w/w) ratio and the cross-linking accelerator trifluoromethanesulfonate scandium salt (ScTFMS) on the structure and the properties of the materials are studied. The cross-linker length has not influence on the glass transition (T-g) of the products because of the presence of the flexible PEG units that cancels out the cross-linking effect associated to a shift to higher T-g. A two-domain structure is seen by the presence of a dual T-g in samples cured with ScTFMS. Mathematical analysis of the modulated differential scanning calorimetry curves offers for the first time the possibility to identify/confirm structural differences in complex three-dimensional polymeric structures. Scanning electron microscopy and swelling experiments in ethyl acetate respectively reveal an increase in the pore size (1.13 to 5.48 nm) and in the absorption ability of the elastomers cured with different types and quantities of PEG cross-linker. The new elastomeric materials are exhibiting a rubbery state over a wide temperature range and absorptivity for the potential recovery of pollutants in soil and/or water.