共检索到 2

Northern peatlands are a major component of the global carbon (C) cycle. Widespread climate-driven ecohydrological changes in these ecosystems can have major consequences on their C sequestration function. Here, we synthesize plant macrofossil data from 33 surficial peat cores from different ecoclimatic regions, with high-resolution chronologies. The main objectives were to document recent ecosystem state shifts and explore their impact on C sequestration in high-latitude undisturbed peatlands of northeastern Canada. Our synthesis shows widespread recent ecosystem shifts in peatlands, such as transitions from oligotrophic fens to bogs and Sphagnum expansion, coinciding with climate warming which has also influenced C accumulation during the last similar to 100 years. The rapid shifts towards drier bog communities and an expansion of Sphagnum sect. Acutifolia after 1980 CE were most pronounced in the northern subarctic sites and are concurrent with summer warming in northeastern Canada. These results provide further evidence of a northward migration of Sphagnum-dominated peatlands in North America in response to climate change. The results also highlight differences in the timing of ecosystem shifts among peatlands and regions, reflecting internal peatland dynamics and varying responses of vegetation communities. Our study suggests that the recent rapid climate-driven shifts from oligotrophic fen to drier bog communities have promoted plant productivity and thus peat C accumulation. We highlight the importance of considering recent ecohydrological trajectories when modelling the potential contribution of peatlands to climate change. Our study suggests that, contrary to expectations, peat C sequestration could be promoted in high-latitude non-permafrost peatlands where wet sedge fens may transition to drier Sphagnum bog communities due to warmer and longer growing seasons.

期刊论文 2022-03-01 DOI: 10.1111/gcb.16032 ISSN: 1354-1013

Thicker snowpacks and their insulation effects cause winter-warming and invoke thaw of permafrost ecosystems. Temperature-dependent decomposition of previously frozen carbon (C) is currently considered one of the strongest feedbacks between the Arctic and the climate system, but the direction and magnitude of the net C balance remains uncertain. This is because winter effects are rarely integrated with C fluxes during the snow-free season and because predicting the net C balance from both surface processes and thawing deep layers remains challenging. In this study, we quantified changes in the long-term net C balance (net ecosystem production) in a subarctic peat plateau subjected to 10 years of experimental winter-warming. By combining(210)Pb and(14)Cdating of peat cores with peat growth models, we investigated thawing effects on year-round primary production and C losses through respiration and leaching from both shallow and deep peat layers. Winter-warming and permafrost thaw had no effect on the net C balance, but strongly affected gross C fluxes. Carbon losses through decomposition from the upper peat were reduced as thawing of permafrost induced surface subsidence and subsequent waterlogging. However, primary production was also reduced likely due to a strong decline in bryophytes cover while losses from the old C pool almost tripled, caused by the deepened active layer. Our findings highlight the need to estimate long-term responses of whole-year production and decomposition processes to thawing, both in shallow and deep soil layers, as they may contrast and lead to unexpected net effects on permafrost C storage.

期刊论文 2020-10-01 DOI: 10.1111/gcb.15283 ISSN: 1354-1013
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-2条  共2条,1页