Drought and soil nitrogen (N) deficiency are the limiting factors for poplar plantation productivity improvement in semi-arid regions. N addition could alleviate the growth decline of trees caused by drought; however, the effectiveness under severe drought and the underlying ecophysiological understanding remains uncertain. To further clarify the mechanisms of N addition in regulating tree biomass accumulation under different drought levels, we investigated the effects of 6 g NH4NO3 per plant addition on the carbon and N assimilation and biomass accumulation of potted poplar seedlings under moderate or severe drought (40 % or 20 % of field capacity) conditions, with a particular emphasis on carbon and N interactions. We found that under moderate drought, N addition markedly promoted the activities of antioxidases, nitrate reductase (39 %), and N concentration (56 %) in leaves, significantly alleviated the damages of the membranes and photosystem II, and increased both leaf area (69 %) and chlorophyll content per unit leaf area, along with net photosynthesis rate (34 %), thereby significantly alleviating growth restrictions. However, under severe drought, although N addition increased the accumulation of both soluble sugars and N of the whole plant, it did not ameliorate the damage to membranes and photosystem II, nor did it improve chlorophyll content, leaf area, or biomass accumulation. Therefore, N addition could increase leaf area, enhance antioxidants, and positively influence leaf carbon assimilation (0.60, p < 0.001) in poplar seedlings under moderate drought. The restrictions on leaf area and carbon assimilation were exacerbated during severe drought, which mitigated the positive effects of N addition on carbon assimilation and biomass accumulation. The findings of this study suggest that the growth of hybrid poplar can be enhanced by applying N fertilizer under mild drought conditions. In contrast, N fertilization has no significant effect in severe drought conditions.
Biodegradable plastics (BPs) are known to decompose into micro-nano plastics (BMNPs) more readily than conventional plastics (CPs). Given the environmental risks posed by BMNPs in soil ecosystems, their impact has garnered increasing attention. However, research focusing on the toxic effects of BMNPs on soils remains relatively limited. The degradation process and duration of BMNPs in soil are influenced by numerous factors, which directly impact the toxic effects of BMNPs. This highlights the urgent need for further research. In this context, this review delineates the classification of BPs, investigates the degradation processes of BPs along with their influencing factors, summarizes the toxic effects on soil ecosystems, and explores the potential mechanisms that underlie these toxic effects. Finally, it provides an outlook on related research concerning BMNPs in soil. The results indicate that specific BMNPs release additives at a faster rate during decomposition, degradation, and aging, with certain compounds exhibiting increased bioavailability. Importantly, a substantial body of research has shown that BMNPs generally manifest more pronounced toxic effects in comparison to conventional micro-nano plastics (CMNPs). The toxic effects associated with BMNPs encompass a decline in soil quality and microbial biomass, disruption of nutrient cycling, inhibition of plant root growth, and negative impacts on invertebrate reproduction, survival, and fertilization rates. The rough and complex surfaces of BMNPs contribute to increased mechanical damage to tested organisms, enhance absorption by microorganisms, and disrupt normal physiological functions. Notably, the toxic effects of BMNPs on soil ecosystems are influenced by factors including concentration, type of BMNPs, exposure conditions, degradation products, and the nature of additives used. Therefore, it is crucial to standardize detection technologies and toxicity testing conditions for BMNPs. In conclusion, this review provides scientific evidence that supports effective prevention and management of BMNP pollution, assessment of its ecological risks, and governance of BMNPs-related products.
The purpose of this study was to explore the carbon and nitrogen metabolism mechanisms of sand-cultivated cucumbers under different deficit irrigation-nitrogen management strategies and provide a theoretical basis for their greenhouse management. This study set up two factors, the deficit irrigation level and the nitrogen application rate, and conducted an experiment on deficit irrigation-nitrogen coupling of sand-cultivated cucumbers using a quadratic saturation D-optimal design. Seven treatments were set up in the experiment, to measure the soluble sugar and protein contents, as well as the activity of key enzymes for carbon and nitrogen metabolism at five different growth stages. The results indicate that the 80% irrigation with 623 kg N hm-2 (IN4) treatment significantly improved the soluble sugar, protein, and actual leaf nitrogen contents of cucumber at the five different growth stages and, as a result, achieved higher sucrose synthase (SS) and sucrose phosphate synthase (SPS) activities in the cucumber leaves. Furthermore, such improvements were due to the reduction in oxidative damage of sand-cultivated cucumber at various growth stages. The IN4 and 89% irrigation with 1250 kg N hm-2 (IN5) treatments significantly increased the activities of RuBisCO, catalase (CAT), peroxidise (POD), and superoxide dismutase (SOD) at various growth stages of sand-cultivated cucumber. The higher activities of glutamate dehydrogenase (GLDH), glutamate synthase (GOGAT), nitrate reductase (NR), glutamine synthase (GS), acid invertase enzyme (AIE), neutral invertase enzyme (NIE), and better antioxidative enzyme activities were recorded under the IN4 treatments at various growth stages, which effectively improve (69.6%) cucumber yield. The soil properties, carbon and nitrogen metabolism, and antioxidant metabolism were positively correlated with sand-cultivated cucumber yield in a greenhouse. We concluded that the IN4 treatment was the better deficit irrigation-nitrogen management strategy because it considerably improves carbon and nitrogen metabolism, antioxidant enzyme activities, and sand-cultivated cucumber yield in a greenhouse.
In the context of global warming, increasingly widespread and frequent freezing and thawing cycles (FTCs) will have profound effects on the biogeochemical cycling of soil carbon and nitrogen. FTCs can increase soil greenhouse gas (GHG) emissions by reducing the stability of soil aggregates, promoting the release of dissolved organic carbon, decreasing the number of microorganisms, inducing cell rupture, and releasing carbon and nitrogen nutrients for use by surviving microorganisms. However, the similarity and disparity of the mechanisms potentially contributing to changes in GHGs have not been systematically evaluated. The present study consolidates the most recent findings on the dynamics of soil carbon and nitrogen, as well as GHGs, in relation to FTCs. Additionally, it analyzes the impact of FTCs on soil GHGs in a systematic manner. In this study, particular emphasis is given to the following: (i) the reaction mechanism involved; (ii) variations in soil composition in different types of land (e.g., forest, peatland, farmland, and grassland); (iii) changes in soil structure in response to cycles of freezing temperatures; (iv) alterations in microbial biomass and community structure that may provide further insight into the fluctuations in GHGs after FTCs. The challenges identified included the extension of laboratory-scale research to ecosystem scales, the performance of in-depth investigation of the coupled effects of carbon, nitrogen, and water in the freeze-thaw process, and analysis of the effects of FTCs through the use of integrated research tools. The results of this study can provide a valuable point of reference for future experimental designs and scientific investigations and can also assist in the analysis of the attributes of GHG emissions from soil and the ecological consequences of the factors that influence these emissions in the context of global permafrost warming.
This study assessed whether a natural regeneration or active tree-planting reforestation strategy better restored the C and N-cycle processes and associated microbiota within soils after 18 years in a Premontane Wet Life zone site in Monteverde, Costa Rica, compared to adjacent old secondary forest and pasture soils (both >60 years). Our findings apply to small-scale restoration sites (<0.5 ha plots) commonly used in Monteverde. Both restoration strategies showed recovering soil C and N-cycle processes with similar levels of TN, NH4+, NO3-, Biomass-C, and efficiency of organic C use. Both strategies appeared to positively influence the recovery of the levels and community compositional stability of the Actinobacterial, Acidobacterial, N-fixing (N-Fixer) bacterial, ammonium-oxidizing bacterial, and complex organic C-degrading fungal communities. The main differences between the two strategies were that the tree-planted and pasture soils had similar compositions of the Actinobacterial, N-Fixer, and Fungal complex organic C degrader, while the natural regeneration and pasture soils had similar compositions of these groups and the Acidobacteria. However, the community compositions of all five microbial groups were different between restored forest and the old secondary forest soils. These results suggest that while the soil ecosystems from both reforestation strategies are recovering, after 18 years, there is still more recovery to occur. Lastly, possible indicators of post-restoration soil ecosystem enhancement included increasing constancy of critical microbial group composition, efficiency of organic C conversion to biomass, Biomass-C,NH4+, NO3-, and levels of Acidothermus, Acidobacteria subgroups 2, 3, and 5, Archaeorhizomyces, Anaeromyxobacter, Bradyrhizobium, Nitrosomonas, Flavobacterium, and Nitrospira.
China accounts for around 50 % of the global vegetable harvested area which is expected to increase continuously. Large cropland areas, including rice paddy, have been converted into vegetable cultivation to feed an increasingly affluent population and increase farmers' incomes. However, little information is available on the balance between economic benefits and environmental impacts upon rice paddy conversion into vegetable fields, especially during the initial conversion period. Herein, the life cycle assessment approach was applied to compare the differences in agricultural input costs, yield incomes, net economic benefits (NEB), carbon (C) and nitrogen (N) footprints and net ecosystem economic benefits (NEEB) between the double rice paddy (Rice) and newly vegetable field (Veg) converted from Rice based on a four-year field experiment. Results showed that yield incomes from Veg increased by 96-135 %, outweighing the increased agricultural input costs due to higher inputs of labor and pesticide, thus significantly increasing NEB by 80-137 %, as compared to Rice. Rice conversion into Veg largely increased C footprints by 2.3-10 folds and N footprints by 1.1-2.6 folds, consequently increasing the environmental damage costs (EDC) by 2.2 folds on average. The magnitudes of increases in C and N footprints and EDC due to conversion strongly declined over time. The NEEB, the trade-offs between NEB and EDC, decreased by 18 % in the first year, while increasing by 63 % in the second year and further to 135 % in the fourth year upon conversion. These results suggested that rice paddy conversion into vegetable cultivation could increase the NEB at the expense of enhanced EDC, particular during the initial conversion years. Overall, these findings highlight the importance of introducing interventions to mitigate C and N footprints from newly converted vegetable field, so as to maximize NEEB and realize the green and sustainable vegetable production.
Anticipated permafrost thaw in upcoming decades may exert significant impacts on forest soil nitrogen (N) dynamics. The rate of soil N mineralization (Nmin) plays a crucial role in determining soil N availability. Nevertheless, our understanding remains limited regarding how biotic and abiotic factors influence the Nmin of forest soil in response to permafrost thaw. In this study, we investigated the implications of permafrost thaw on Nmin within a hemiboreal forest based on a field investigation along the degree of permafrost thaw, having monitored permafrost conditions for eight years. The results indicate that permafrost thaw markedly decreased Nmin values. Furthermore, Nmin demonstrated positive associations with soil substrates (namely, soil organic carbon and soil total nitrogen), microbial biomass carbon and nitrogen, and soil moisture content. The decline in Nmin due to permafrost thaw was primarily attributed to the diminished quality and quantity of soil substrates rather than alterations in plant community composition. Collectively, our results underscore the pivotal role of soil substrate and microbial biomass in guiding forest soil N transformations in the face of climate-induced permafrost thaw.
The snowbed habitats represent a relevant component of the alpine tundra biome, developing in areas characterized by a long-lasting snow cover. Such areas are particularly sensitive to climate changes, because small variations in air temperature, rain, and snowfall may considerably affect the pedoclimate and plant phenology, which control the soil C and N cycling. Therefore, it is fundamental to identify the most sensitive abiotic and biotic variables affecting soil nutrient cycling. This work was performed at seven permanent snowbed sites belonging to Salicetum herbaceae vegetation community in the northwestern Italian Alps, at elevations between 2,686 and 2,840 m.a.s.l. During a four-year study, we investigated climate, pedoclimate, floristic composition, phenology, and soil C and N dynamics. We found that lower soil water content and earlier melt-out day decreased soil N-NH4 (+), N-NO3 (-), dissolved organic carbon (DOC), dissolved organic nitrogen (DON), total dissolved nitrogen (TDN), microbial nitrogen (Nmicr), microbial carbon (Cmicr), and C:Nmicr ratio. The progression of the phenological stages of Salix herbacea reduced soil N-NH4 (+) and increased DOC. Our results showed that the snow melt-out day, soil temperature, soil water content, and plant phenological stages were the most important factors affecting soil biogeochemical cycles, and they should be taken into account when assessing the effects of climate change in alpine tundra ecosystems, in the framework of long-term ecological research.
Forest fires have significantly impacted the permafrost environment, and many research programs looking at this have been undertaken at higher latitudes. However, their impacts have not yet been systematically studied and evaluated in the northern part of northeast China at mid-latitudes. This study simultaneously measured ecological and geocryological changes at various sites in the boreal forest at different stages after forest fires (chronosequence approach) in the northern Da Xing'anling (Hinggan) Mountains, Northeast China. We obtained results through field investigations, monitoring and observations, remote sensing interpretations, and laboratory tests. The results show that forest fires have resulted in a decreased Normalized Difference Vegetation Index (NDVI) and soil moisture contents in the active layer, increased active layer thickness (ALT) and ground temperatures, and the release of a large amount of C and N from the soils in the active layer and at shallow depths of permafrost. NDVI and species biodiversity have gradually increased in the years since forest fires. However, the vegetation has not fully recovered to the climax community structures and functions of the boreal forest ecosystems. For example, ground temperatures, ALT, and soil C and N contents have been slowly recovering in the 30years after the forest fires, but they have not yet been restored to pre-fire levels. This study provides important scientific bases for assessment of the impacts of forest fires on the boreal forest ecosystems in permafrost regions, environmental restoration and management, and changes in the carbon stock of soils at shallow (<3m) depths in the Da Xingan'ling Mountains in northeast China.
To better understand the factors controlling the growth of larch trees in Arctic taiga-tundra boundary ecosystem, we conducted field measurements of photosynthesis, tree size, nitrogen (N) content, and isotopic ratios in larch needles and soil. In addition, we observed various environmental parameters, including topography and soil moisture at four sites in the Indigirka River Basin, near Chokurdakh, northeastern Siberia. Most living larch trees grow on mounds with relatively high elevations and dry soils, indicating intolerance of high soil moisture. We found that needle delta(13)c was positively correlated with needle N content and needle mass, and these parameters showed spatial patterns similar to that of tree size. These results indicate that trees with high needle N content achieved higher rates of photosynthesis, which resulted in larger amounts of C assimilation and larger C allocation to needles and led to larger tree size than trees with lower needle N content. A positive correlation was also found between needle N content and soil NK4+ pool. Thus, soil inorganic N pool may indicate N availability, which is reflected in the needle N content of the larch trees. Microtopography plays a principal role in N availability, through a change in soil moisture. Relatively dryer soil of mounds with higher elevation and larger extent causes higher rates of soil N production, leading to increased N availability for plants, in addition to larger rooting space for trees to uptake more N. (C) 2014 Elsevier B.V. and NIPR. All rights reserved.