共检索到 3

Purpose Warming-induced permafrost degradation is anticipated to change the global carbon cycle. We attempted to determine the effect of permafrost degradation on carbon emissions and carbon sequestration of seven wetlands in three zones of Northeast China, aiming to investigate the responses of carbon sources/sinks to permafrost degradation. Methods Three zones (permafrost zone, PZ; discontinuous permafrost zone, DPZ; and permafrost degradation zone, PDZ) were selected to represent permafrost degradation stages. In each zone, we selected seven wetlands along the moisture gradient, namely, marsh (M), thicket swamp (TS), forested swamps (alder swamp, FAS; birch swamp, FBS; and larch swamp, FLS), forested fen (larch fen, FLF), and forested bog (larch bog, FLB). We determined the annual carbon emissions of soil heterotrophic respiration from seven wetlands and the annual net carbon sequestration of vegetation, evaluated the net carbon balance by calculating the difference between annual net carbon sequestration and annual carbon emissions, and then determined the magnitude and direction of carbon-climate feedback. Results and discussion With permafrost degradation, most forested wetlands (excluding FAS in PDZ) still acted as carbon sinks in DPZ (0.30 - 1.88 t ha(-1) year(-1)) and PDZ (0.31 - 1.76 t ha(-1) year(-1)) in comparison to PZ (0.46 - 2.43 t ha(-1) year(-1)). In contrast, M and TS acted as carbon sources in DPZ (-1.72 and -0.82 t ha(-1) year(-1)) and PDZ (-2.66 and -0.98 t ha(-1) year(-1)) in comparison to PZ (-0.86 and 0.03 t ha(-1) year(-1)), this result could be attributed to the increased CO2 emissions (promoted by warmer soil temperatures) and CH4 emissions (promoted by warmer soil temperatures, higher water tables and greater thaw depths), the two significantly increased the annual carbon emissions (increased by 8.8 - 14.4% in DPZ and by 35.0 - 46.0% in PDZ), and the annual carbon emissions > the annual net carbon sequestration. Furthermore, in terms of net radiative forcing, five forested wetlands still showed negative net radiative forcing in DPZ (-6.90 to -1.10 t CO2-eq ha(-1) year(-1)) in comparison to PZ (-8.91 to -1.62 t CO2-eq ha(-1) year(-1)). In contrast, in PDZ, only FLB showed negative net radiative forcing (-6.29 t CO2-eq ha(-1) year(-1)) and significantly increased by 288.3% compared to PZ (P < 0.05), indicating an ever-increasing net cooling impact, while the other four forested wetlands all turned into positive net radiative forcing (0.84 - 53.56 t CO2-eq ha(-1) year(-1)) because of higher CH4 (CO2-eq) emissions, indicating net warming impacts. Conclusions Our results indicated that permafrost degradation affected the carbon sources/sinks of seven wetlands via different mechanisms. M and TS acted as carbon sources in both DPZ and PDZ, while permafrost degradation did not change the overall direction of the net carbon balance of five forested wetlands. Most forested wetlands (excluding FAS in PDZ) still acted as carbon sinks in both DPZ and PDZ, although there were fluctuations in carbon sink values. Moreover, despite being carbon sinks, most forested wetlands (excluding FLB) in PDZ showed positive net radiative forcing compared to DPZ and PZ (negative net radiative forcing) when using the methodology of CO2 equivalent, indicating climatic warming impacts, while FLB showed negative net radiative forcing, indicating a climatic cooling impact. Therefore, FLB should be protected as a priority in the subsequent carbon sink management practices in permafrost zones.

期刊论文 2023-01-01 DOI: 10.1007/s11368-022-03271-3 ISSN: 1439-0108

Permafrost peatlands, as large soil carbon pools, are sensitive to global warming. However, the effects of temperature, moisture, and their interactions on carbon emissions in the permafrost peatlands remain unclear, when considering the availability of soil matrixes. The permafrost peatland (0-50 cm soil) in the Great Xing'an Mountains was selected to explore the deficiency. The cumulative carbon dioxide (CO2) and methane (CH4) emissions from soil were measured under different temperatures (5 C, 10 C, and 15 C) and moisture content (130%, 100%, and 70%) treatments by the indoor incubation. The results showed that the soil carbon and nitrogen matrix determined soil carbon emissions. Warming affected the availability of soil carbon and nitrogen substrates, thus stimulating microbial activity and increasing soil carbon emissions. With soil temperature increasing by 10 C, soil CO2 and CH4 emission rates increased by 5.1-9.4 and 3.8-6.4 times respectively. Warming promoted soil carbon emissions, and the decrease of moisture content promoted CO2 emissions but inhibited CH4 emissions in the permafrost peatland. Soil moisture and the carbon and nitrogen matrix determined the intensity of CO2 and CH4 emissions. The results were important to assess soil carbon emissions from permafrost peatlands under the impact of future climate warming and to formulate carbon emission reduction policies.

期刊论文 2022-07-10 DOI: 10.1016/j.scitotenv.2022.154725 ISSN: 0048-9697

Given the widely noted increase in the warming effects of rising greenhouse gas concentrations, it has been unclear why global surface temperatures did not rise between 1998 and 2008. We find that this hiatus in warming coincides with a period of little increase in the sum of anthropogenic and natural forcings. Declining solar insolation as part of a normal eleven-year cycle, and a cyclical change from an El Nino to a La Nina dominate our measure of anthropogenic effects because rapid growth in short-lived sulfur emissions partially offsets rising greenhouse gas concentrations. As such, we find that recent global temperature records are consistent with the existing understanding of the relationship among global surface temperature, internal variability, and radiative forcing, which includes anthropogenic factors with well known warming and cooling effects.

期刊论文 2011-07-19 DOI: 10.1073/pnas.1102467108 ISSN: 0027-8424
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-3条  共3条,1页