In light of the problems of large operation resistance and small soil fragmentation during the harvesting operations of existing cassava harvesters, a long- and short-toothed digging shovel was designed. A virtual simulation soil trough model of cassava ridge soil particles was established using the discrete element method, and the Hertz-Mindlin with JKR contact model was employed to simulate the operation quality of the long- and shorttoothed digging shovel and the original digging shovel. In the movement and force analysis of the digging shovel, the angle of entry, the advance speed of the machine, and the height of the digging adjustment were the test factors. The response surface test was conducted on the digging rate and the damaged cassava rate. The results of the experimental field trial showed that the average digging rate of harvested cassava increased by 2.56%, and the average rate of damaged harvested cassava decreased by 1.54%, compared with the original digging shovel. The digging operation process was stable and met the requirements of cassava harvesting field operations. The results of this study may inform future studies on the design and improvement of a cassava harvester.
Cassava is one of the world's top three tuber crops, and its harvesting mechanization level is low. Digging- pulling cassava harvester is the main research direction of cassava harvesters. However, the soil-loosening components of the existing digging-pulling harvesters have poor loosening effect, high tuber damage rate, and large pulling force of cassava tubers after loosening. The two-sided loosening shovel that digs and loosens the soil on both sides of the tubers has low working resistance and is not easy to damage the tubers, but there are few reports on the impact of its operating performance. Therefore, this study focuses on three common types of two-sided soil-loosening shovels: the offset-wing shovel (OWS), L shovel (LS), and double-wing shovel (DWS). A two-factor, three-level orthogonal experiment is conducted, taking tillage depth (h) and shovel distance (b) as variables, then range analysis and factor impact analysis are carried out. Finally, through comprehensive comparison and optimization, a shovel type with best operational effects and its optimal working conditions are identified. The results show the LS demonstrated optimal performance when the breakage rate and pulling force were minimized. At the optimal combination of h of 0.25 m and b of 0.6 m, the LS has a breakage rate of 7.576% and a pulling force of 291.608 N. This study can provide basis for optimizing the design of loosening parts of digging-pulling cassava harvester.