共检索到 3

(3-Hexachlorocyclohexane ((3-HCH) is a persistent organochlorine pesticide that poses a significant threat to the ecological environment, necessitating the urgent development of effective degradation methods. Microbial degradation has demonstrated substantial potential among various bioremediation techniques due to its environmentally friendly and economical characteristics. This study evaluates the degradation capability of Enterobacter sp. CS01 on (3-HCH, its physiological responses, and its potential application in soil remediation. Under optimal conditions (pH 7, 30 degrees C), 51 % of (3-HCH was effectively removed. Metabolomics and antioxidant enzyme activity analyses revealed that CS01 defends against oxidative damage by modulating the activities of superoxide dismutase (SOD) and catalase (CAT), involving butyrate, alanine, aspartate, and glutamate metabolism, as well as the pentose phosphate pathway. CS01 converts (3-HCH into less toxic intermediates through dichloride elimination, dehalogenation of hydrogen, and hydrolysis reactions. Soil experiments indicated that soil enzyme activities (S-POD, S-DHA, S-PPO) are closely related to the degradation of (3-HCH, with the order of carbon source utilization being esters, amino acids, and sugars. This study provides new insights into the microbial degradation mechanisms of organochlorine pesticides and aids in the development of more efficient and environmentally friendly degradation technologies.

期刊论文 2025-05-01 DOI: 10.1016/j.bej.2025.109673 ISSN: 1369-703X

An Integrated Process Intensification (IPI) technology-based roadmap is proposed for the utilization of renewables (water, air and biomass/unavoidable waste) in the small-scale distributed production of the following primary products: electricity, H-2, NH3, HNO3 and symbiotic advanced (SX) fertilizers with CO2 mineralization capacity to achieve negative CO2 emission. Such a production platform is an integrated intensified biorefinery (IIBR), used as an alternative to large-scale centralized production which relies on green electricity and CCUS. Hence, the capacity and availability of the renewable biomass and unavoidable waste were examined. The critical elements of the IIBR include gasification/syngas production; syngas cleaning; electricity generation; and the conversion of clean syngas (which contains H-2, CO, CH4, CO2 and N-2) to the primary products using nonthermal plasma catalytic reactors with in situ NH3 sequestration for SA fertilizers. The status of these critical elements is critically reviewed with regard to their techno-economics and suitability for industrial applications. Using novel gasifiers powered by a combination of CO2, H2O and O-2-enhanced air as the oxidant, it is possible to obtain syngas with high H-2 concentration suitable for NH3 synthesis. Gasifier performances for syngas generation and cleaning, electricity production and emissions are evaluated and compared with gasifiers at 50 kWe and 1-2 MWe scales. The catalyst and plasma catalytic reactor systems for NH3 production with or without in situ reactive sequestration are considered in detail. The performance of the catalysts in different plasma reactions is widely different. The high intensity power (HIP) processing of perovskite (barium titanate) and unary/binary spinel oxide catalysts (or their combination) performs best in several syntheses, including NH3 production, NOx from air and fertigation fertilizers from plasma-activated water. These catalysts can be represented as BaTi1-vO3-x{#}(y)N-z (black, piezoelectric barium titanate, bp-{BTO}) and (M3-jMkO4-m)-M-(1)-O-(2){#}(n)N-r/SiO2 (unary (k = 0) or a binary (k > 0) silane-coated SiO2-supported spinel oxide catalyst, denoted as M/Si = X) where {#} infers oxygen vacancy. HIP processing in air causes oxygen vacancies, nitrogen substitution, the acquisition of piezoelectric state and porosity and chemical/morphological heterogeneity, all of which make the catalysts highly active. Their morphological evaluation indicates the generation of dust particles (leading to porogenesis), 2D-nano/micro plates and structured ribbons, leading to quantum effects under plasma catalytic synthesis, including the acquisition of high-energy particles from the plasma space to prevent product dissociation as a result of electron impact. M/Si = X (X > 1/2) and bp-{BTO} catalysts generate plasma under microwave irradiation (including pulsed microwave) and hence can be used in a packed bed mode in microwave plasma reactors with plasma on and within the pores of the catalyst. Such reactors are suitable for electric-powered small-scale industrial operations. When combined with the in situ reactive separation of NH3 in the so-called Multi-Reaction Zone Reactor using NH3 sequestration agents to create SA fertilizers, the techno-economics of the plasma catalytic synthesis of fertilizers become favorable due to the elimination of product separation costs and the quality of the SA fertilizers which act as an artificial root system. The SA fertilizers provide soil fertility, biodiversity, high yield, efficient water and nutrient use and carbon sequestration through mineralization. They can prevent environmental damage and help plants and crops to adapt to the emerging harsh environmental and climate conditions through the formation of artificial rhizosphere and rhizosheath. The functions of the SA fertilizers should be taken into account when comparing the techno-economics of SA fertilizers with current fertilizers.

期刊论文 2025-02-01 DOI: 10.3390/catal15020105

Soil and water pollution are current global environmental and agricultural challenges, adversely affected by ineffective industrial waste treatment before discharging into the environment combined with inefficient long-term inputs of fertilizers. The development of targeted fertilizers delivery vehicles, sufficient soil/water remediation, and contamination detection systems using eco-friendly technologies become critically important. Due to their high specific surface area, biocompatibility, easiness of operation, and high performance, nanomaterials-based controllable soil fertility promoters, adsorbents, sensors, and photocatalysts are promising tools for soil/water pollution prevention, remediation, and monitoring. Altogether, crystallinity, hydrophilic-tunable surface chemistry, and 3D forming ability of nanocellulose (NC), in addition to biodegradability, regeneration ability, and mechanical properties of NC nanocomposite hydrogels (NCHs), lead to advancing promising soil/water nanohydrogels-based targeted fertilizers delivery vehicles, adsorbents, co-adsorbents/co-sensors, and co-adsorbents/co-photocatalysts. In these systems, NCHs introduce 3D rigid porous scaffolds for homogenous dispersing/fixing of functional groups, fertilizers, fluorescence sources, and photocatalysts. Also, they present stimuli-responsive networks for fertilizer regulation in soil, and matrixes with extra active sites enabling contaminates immobilization/degradation. This review outlines an update of the most recent potential utilization of functionalized NCHs-based soil/water adsorbents, photocatalysts, sensors, and slow/targeted fertilizers release vehicles. An in-depth discussion of surface pretreatments-modifications used to improve their performance, fabrication methods, application properties, and working mechanisms was discussed. The potential limitations and future perspectives on using NCHs in fertilizer/water management, soil/water remediation, and detection are highlighted.

期刊论文 2024-02-01 DOI: 10.1016/j.jece.2024.111892 ISSN: 2213-2929
  • 首页
  • 1
  • 末页
  • 跳转
当前展示1-3条  共3条,1页