Currently, traditional vertical barrier materials are associated with large carbon footprints and high costs (in some regions) due to the widespread use of Portland cement and sodium-based bentonite materials. In recent years, a new technology of Carbonized Reactive Magnesia Cement (CRMC) has gradually been developed to sequester CO2 using Eco-cement. The application prospects of CRMC in vertical barrier materials are explored in this study. The changes in flowability of Reactive Magnesia Cement (RMC) slurry and the unconfined compressive strengthen (UCS) and permeability characteristics of CRMC treated soils are investigated. The results show that the fluidity of RMC slurry decreases further with the increase of MgO substitute cement content. For RMC slurry meeting the fluidity requirements, UCS increased rapidly in the early period (3 h) after carbonization, reaching 348.33 kPa, and the hydraulic conductivity k decreased (k < 1 x10(- 7) cm/s) in the later period (14d), and the final hydraulic conductivity reached 6.13 x 10(- 8) cm/s (28d). The pores of the material are filled with a large number of hydration products and carbonates, which alters the pore size distribution structure of the material. This is the reason for the mechanical properties and permeability performance of CRMC treated soils. The overall results of this study well demonstrate that CRMC treated soils, as a new, environmentally friendly, and cost-effective material, have great potential in the construction of vertical barriers.
Study area: Urumqi Glacier No.1 Catchment in central Asia. Study focus: Chemical weathering at the basin scale is important process for understanding the feedback mechanism of the carbon cycle and climate change. This study mainly used the actual sampling data in 2013, 2014, and 2016, and the first collection from the literature in same catchment to analyze the seasonal and interannual characteristics of meltwater runoff, as well as cation denudation rate (CDR). New hydrological insights for the study region: The dominant ions of meltwater runoff are Ca2 +, HCO3- , and SO42-, which are mainly derived from calcite dissolution, feldspar weathering and sulfide oxidation. Meltwater runoff at Urumqi Glacier No.1 has higher concentrations of Ca2+ and lower concentrations of HCO3- than that from glaciers in Asia. Compared to 2006 and 2007, cation concentrations increased in 2013 and 2014, while SO42- concentration decreased. The daily ion concentration has seasonality and exhibits a negative relationship with discharge. Daily CDR is positively related to discharge and temperature. Annual CDR values range from 12.34 to 19.04 t/ km2/yr in 2013, 2014, and 2016, which are 1-1.7 times higher than those in 2006 and 2007 and higher than some glaciers in Asia. These results indicate that chemical weathering rate in the Urumqi Glacier No.1 catchment has increased with climate warming, and it is stronger than that of some glaciers in the Tibetan Plateau and surroundings.
This study investigates black carbon (BC) concentrations in the seasonal snowpack on the Godwin-Austen Glacier and in surface snow at K2 Camps 1 and 2 (Karakoram Range), assessing their impact on snowmelt during the 2019 ablation season. Potential BC and moisture sources were identified through back-trajectory analysis and atmospheric reanalyses. Variations in water stable isotopes (delta 1(8)O and delta 2H) in the snowpack were analysed to confirm its representativeness as a climatic record for the 2018-19 accumulation season. The average BC concentration in the snow pits (12 ng g-1) generated 66 mm w.e. (or 53 mm w.e. excluding the basal zone) of meltwater. Surface snow at K2 Camp 1 showed BC concentrations of 7 ng g-1, consistent with those on the snowpack surface, suggesting it may reflect local BC levels in late February 2019. In contrast, higher concentrations at K2 Camp 2 (26 ng g-1) were potentially linked to expedition activities.
This review explores both the positive and negative impacts of chemistry on society, focusing on the inter between pharmaceutical, natural, and synthetic chemicals. On the one hand, drugs developed through medicinal chemistry have saved lives, improved people's quality of life, and increased longevity. However, they also pose risks, including fatalities and environmental damage. Pharmaceutical chemistry has revolutionized medical practice by enabling the treatment and cure of fatal or debilitating diseases, significantly contributing to the rise in global life expectancy through the research and development of new bioactive substances. This article also highlights the harmful effects of toxic synthetic substances, which negatively impact human health and the environment, affecting plants, animals, air, water, soil, and food.
Drought may impact plant-soil biotic interactions in ways that modify aboveground herbivore performance, but the outcomes of such biotic interactions under future climate are not yet clear. We performed a growth chamber experiment to assess how long-term, drought-driven changes in belowground communities influence plant growth and herbivore performance using a plant-soil feedback experimental framework. We focussed on two common pasture legumes-lucerne, Medicago sativa L., and white clover, Trifolium repens L. (both Fabaceae)-and foliar herbivores-cotton bollworm, Helicoverpa armigera (H & uuml;bner) (Lepidoptera: Noctuidae), and two-spotted spider mite, Tetranychus urticae Koch (Acari: Tetranychidae). Soil was collected from a field facility where rainfall had been manipulated for 6 years, focussing on treatments representing ambient rainfall and prolonged drought (50% reduction relative to ambient), to consider the effects of biological legacies mediated by the prolonged drought. All soils were sterilized and re-inoculated to establish the respective home (i.e. where a given plant is cultivated in its own soil) and away (i.e. where a given plant is cultivated in another species' soil) treatments in addition to a sterile control. We found that the relative growth rate (RGR) and relative consumption of larvae were significantly lower on lucerne grown in soil with ambient rainfall legacies conditioned by white clover. Conversely, the RGR of insect larvae was lower on white clover grown in soil with prolonged drought legacies conditioned by lucerne. Two-spotted spider mite populations and area damage (mm2) were significantly reduced on white clover grown in lucerne-conditioned soil in drought legacies. The higher number of nodules found on white clover in lucerne-conditioned soil suggests that root-rhizobia associations may have reduced foliar herbivore performance. Our study provides evidence that foliar herbivores are affected by plant-soil biotic interactions and that prolonged drought may influence aboveground-belowground linkages with potential broader ecosystem impacts.
Mining can greatly affect water quality in nearby areas, especially when mines are abandoned and lead to contamination from tailings and drainage. This study examines the impact of the abandoned Ze & iuml;da lead mine on water sources in the Upper Moulouya region of northwestern Morocco. We aimed to evaluate water quality, understand geochemical processes, and determine the suitability of water for drinking and irrigation. In summer 2021, 21 water samples were collected from rivers, dams, groundwater, and quarry lakes. We analyzed 18 physicochemical and metallic parameters, finding significant variations in ion concentrations. The main ions were ranked as Na+ > Mg2+ > Ca2+ > K+ and HCO3- > Cl- > SO42- > NO3-. Metal concentrations followed the order Zn > Cu > Pb > As > Cd. The Drinking Water Quality Index (DWQI) showed that 95% of the samples were not suitable for drinking. Similarly, the Irrigation Water Quality Indexes (IWQIs) indicated that quarry lakes were unsuitable for irrigation, while groundwater met acceptable criteria. Over 70% of the samples showed no significant metal contamination based on the Heavy Metal Evaluation Index (HEI) and Heavy Metal Pollution Index (HPI). The data suggest that water-rock interactions are the main drivers of hydrochemical changes, with processes like calcite, dolomite, otavite, and cerussite precipitation, as well as the weathering of minerals like halite, starkeyite, and sylvite. To protect water quality and prevent environmental damage, ongoing monitoring and appropriate measures are recommended for the Ze & iuml;da mining area.
The Tibetan Plateau is the Asia Water Tower and is pivotal for Asia and the whole world. Groundwater is essential for sustainable development in its alpine regions, yet its chemical quality increasingly limits its usability. The present research examines the hydrochemical characteristics and origins of phreatic groundwater in alpine irrigation areas. The study probes the chemical signatures, quality, and regulatory mechanisms of phreatic groundwater in a representative alpine irrigation area of the Tibetan Plateau. The findings indicate that the phreatic groundwater maintains a slightly alkaline and fresh status, with pH values ranging from 7.07 to 8.06 and Total Dissolved Solids (TDS) between 300.25 and 638.38 mg/L. The hydrochemical composition of phreatic groundwater is mainly HCO3-Ca type, with a minority of HCO3-NaCa types, closely mirroring the profile of river water. Nitrogen contaminants, including NO3-, NO2-, and NH4+, exhibit considerable concentration fluctuations within the phreatic aquifer. Approximately 9.09% of the sampled groundwaters exceed the NO2- threshold of 0.02 mg/L, and 28.57% surpass the NH4+ limit of 0.2 mg/L for potable water standards. All sampled groundwaters are below the permissible limit of NO3- (50 mg/L). Phreatic groundwater exhibits relatively good potability, as assessed by the entropy-weighted water quality index (EWQI), with 95.24% of groundwaters having an EWQI value below 100. However, the potential health risks associated with elevated NO3- levels, rather than NO2- and NH4+, merit attention when such water is consumed by minors at certain sporadic sampling locations. Phreatic groundwater does not present sodium hazards or soil permeability damage, yet salinity hazards require attention. The hydrochemical makeup of phreatic groundwater is primarily dictated by rock-water interactions, such as silicate weathering and cation exchange reactions, with occasional influences from the dissolution of evaporites and carbonates, as well as reverse cation-exchange processes. While agricultural activities have not caused a notable rise in salinity, they are the main contributors to nitrogen pollution in the study area's phreatic groundwater. Agricultural-derived nitrogen pollutants require vigilant monitoring to avert extensive deterioration of groundwater quality and to ensure the sustainable management of groundwater resources in alpine areas.
Copper, a malleable and ductile transition metal, possesses two stable isotopes. These copper isotopic composition data have recently found diverse applications in various fields and disciplines. In geology, copper isotopes serve as tracers that aid in investigating ore formation processes and the mechanisms of copper deposits Likewise, it has emerged as a valuable tracer in polluted environments. In plant biology, copper acts as an essential micronutrient crucial for photosynthesis, respiration, and growth. Copper isotopes contribute to understanding how plants uptake and dispense copper from the soil within their tissues. Similarly, in animals, copper serves as an essential trace element, playing a vital role in growth, white blood cell function, and enzyme activity. In humans, copper acts as an antioxidant, neutralising harmful free radicals within the body. It also helps in maintaining the nervous and immune system. Furthermore, copper isotopes find medical applications, particularly in cancer diagnostics, neurodegenerative diseases, and targeted radiotherapy. However, excessive copper can have detrimental effects in humans such as it can cause liver damage, nausea, and abdominal pain, whilst in plants it can affect the growth of plants, photosynthesis, and membrane permeability. This review emphasises the significance of copper and its isotopes in geology, the environment, and human health.
Sand aging, defined by time-dependent increases in stiffness and strength over periods ranging from days to months, poses significant challenges in geotechnical engineering and soil science. Despite its relevant implications, the mechanisms driving sand aging remain understood. This review systematically examines sand aging, emphasizing the classification of chemical and mechanical processes involved. Key advancements in chemical aging understanding, particularly the influence of surface chemistry and electrokinetic forces, are discussed. Additionally, the review underscores the critical role of micromechanical modeling, especially discrete element methods, in elucidating particle interactions and aging phenomena. The review also identifies essential directions for future research, notably incorporating particle shape and surface texture into aging models. Hence, this comprehensive resource aims to enhance the understanding of sand aging.
A strain of Bacillus licheniformis T5 was isolated from soil contaminated with crude oil due to its efficient degradation of polycyclic aromatic hydrocarbons (PAHs). When subjected to stress metabolism using phenanthrene as a carbon source, significant changes were observed in T5 cells. Infrared spectrum analysis revealed the presence of -C=C- and Ph-O-C (aromatic) groups on the bacterial surface, facilitating the adsorption of PAHs on the phospholipid layer and causing damage to the cell membrane. Scanning electron microscope (SEM) analysis showed the changes of cell morphology, including a large number of folds on the lower surface and the folding of cell membrane. Transmission electron microscope (TEM) observation showed that non-stressed bacteria with adequate nutritional conditions accumulated more lipids. However, the stress group contained more protein. It was found that stress metabolism led to the increase of protein content in T5 cells by 16.4% and the activity of oxidoreductase more than doubled. These physiological and biochemical changes enhance the ability of stressed bacteria to degrade PAHs efficiently, thereby reducing the degradation cycle. The findings offer valuable insights for the remediation of PAHs pollution.