Unlike the Himalayas, the sub-Himalayan zones did not experience snowfall and thus suitable for growing solanaceous vegetables. However, several cold waves have been reported to affect the district of Coochbehar (West Bengal, India), which belongs to the Cwa zone (as per Koppen's classification). Variable duration of sub-optimal soil temperature can have a detrimental effect on the growth of seedlings. Our previous study demonstrates that a constant temperature of 20 degrees C (6 degrees below the optimal soil temperature) causes a 71% loss of vigor in seeds of solanaceous plants. Since the soil temperature is not constant diurnally, it was hypothesized that the duration of cold stress can have variable effects on vigor of Capsicum annuum L. It was observed that increasing the duration of cold stress (18 degrees C) up to 2 hours/day can improve the vigor but after 6 hours/day, a significant drop in vigor was observed. This was because of the cold-associated membrane damage leading to the leakage of electrolytes. To date, this stress existing in these regions has gone unnoticed. In this regard, biopriming the seeds with exopolysaccharide (EPS)-producing microbes can be useful as the EPS can form a protective layer on the seeds. Two lesser-known bacteria namely, Phytobacter and Priestia sp. were evaluated for their vigor-recovering ability. Treatment of seed with these microbes reduced the electrolyte leakage which improved the vigor under sub-optimal stress. This was also validated by fluorescent microscopy. Both these strains displayed an enhanced EPS-producing ability at 18 degrees C which correlated with the reduced electrolyte leakage and enhanced stability of cell membrane. Such bacteria can help in promoting seed vigor under sub-optimal temperature stress. Bacterial inoculation prevents cold-induced membrane damage in seedlings.
Damping-off disease in chili (Capsicum annum L.) cultivation is a significant global issue, severely affecting seeds, seedlings, and young plants, regardless of the location of cultivation, whether in greenhouses or open fields. Despite chili being a widely popular vegetable used in various cuisines globally, farmers face challenges in meeting the growing demand due to the extensive damage caused by this disease, ranging from 20 to 85%. The shelf life and quality of mature pods are also severely affected. Damping-off disease is mainly caused by soil-borne fungus from the Pythium species, with additional contributions from Phytophthora, Fusarium, and Rhizoctonia species. These pathogens' adaptability to diverse environmental conditions and resistance to synthetic fungicides make controlling damping-off on a commercial scale challenging. However, integrated disease management has shown promising results as a remedial approach. In this review, we discuss the current state of chili diseases, the nature of the pathogens causing damping-off, the epidemiology of the disease, and various control mechanisms. In this review, we broadly discuss the current state of chili diseases, the nature of the pathogens causing damping-off, the epidemiology of the disease, and various control mechanisms. Furthermore, we highlight the importance and efficacy of integrated disease management techniques, along with future prospects in unexplored areas, such as host-pathogen interaction and sustainable disease control measures. The information in this review aims to assist chili growers in understanding the epidemiology and management of damping-off in chili cultivation.