Linking snow cover frequency (SCF) and atmospheric circulation is vital for comprehension of hemispheric-scale change mechanisms and for accurate forecasting. This study combined MODIS imagery with meteorological observations to investigate the variation of annual SCFs in the Qilian Mountains. Results indicated that more than 80% of annual SCF is distributed at high elevations and mostly on northern slopes, and that SCF is greater in the west than in the east. Abrupt change in the increase in annual SCF was not detected; however, significant (0.05 confidence level) variation with quasi-3-year and quasi-5-year periods indicated potential connection with monsoons. Topographically, SCF increased at high elevations and decreased in valleys. Moreover, SCF increased significantly with a rise in slope below 23 degrees and then decreased between 23 degrees and 45 degrees, and it decreased with a change in aspect from 70 degrees to 200 degrees and then increased from 200 degrees to 310 degrees. Annual SCF variation in the Qilian Mountains is dominated by precipitation rather than by temperature. In the years with high SCFs, southeasterly winds associated with an anticyclone over southeastern China and southwesterly winds associated with the cyclone over the Iranian Plateau brought warm moisture across northwestern China, favoring snowfall in the Qilian Mountains. Meanwhile, cold moisture outbreaks from the Arctic into the mid-latitudes are conducive to maintaining snow cover. However, in the years with low SCFs, the cold air might be difficultly transporting out of the Arctic region due to the strengthening polar vortex. Moreover, the water vapor was less than that of the mean state and divergence over the Qilian Mountains, which difficultly conduced snowfall over the Qilian Mountains.
Investigation of extreme precipitation events in arid and semiarid regions, especially for occurrence time and the associated circulation mechanisms, is vital to support the forecasting of and the advanced response to resultant disasters. In this study, the spatiotemporal pattern of occurrence time of extreme precipitation and atmospheric circulation mechanisms in the Arid Region of Northwest China (ARNC) were analyzed using two indicators (precipitation concentration degree and period) and the climate diagnosis method. Results showed that the significant scattered pattern of extreme precipitation occurrence time (EPOT) in Northern Xinjiang and the postponed pattern of maximum extreme precipitation occurrence (MEPO) from southern to northern Xinjiang are consistent with the input pathway of the Arctic air mass. During the anomaly dispersion year of EPOT and the anomaly delay year of MEPO, the Arctic air mass carried sufficient water vapor is transported to ARNC for triggering extreme precipitation events. Meanwhile, the pattern of concentration-dispersion-concentration in eastern ARNC demonstrates interaction between the westerlies and the summer monsoon. Sufficient water vapor is transported to southwestern ARNC by the southwest monsoon during the anomaly delay year of MEPO and the anomaly concentration year of EPOT. The findings of this study suggest that invasion of the Arctic air mass and the summer monsoon could influence extreme precipitation in ARNC.